You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.1 KiB
178 lines
6.1 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
from collections import defaultdict |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from ultralytics.utils.checks import check_requirements |
|
from ultralytics.utils.plotting import Annotator |
|
|
|
check_requirements('shapely>=2.0.0') |
|
|
|
from shapely.geometry import Polygon |
|
from shapely.geometry.point import Point |
|
|
|
|
|
class Heatmap: |
|
"""A class to draw heatmaps in real-time video stream based on their tracks.""" |
|
|
|
def __init__(self): |
|
"""Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters.""" |
|
|
|
# Visual information |
|
self.annotator = None |
|
self.view_img = False |
|
|
|
# Image information |
|
self.imw = None |
|
self.imh = None |
|
self.im0 = None |
|
|
|
# Heatmap colormap and heatmap np array |
|
self.colormap = None |
|
self.heatmap = None |
|
self.heatmap_alpha = 0.5 |
|
|
|
# Predict/track information |
|
self.boxes = None |
|
self.track_ids = None |
|
self.clss = None |
|
self.track_history = None |
|
|
|
# Counting info |
|
self.count_reg_pts = None |
|
self.count_region = None |
|
self.in_counts = 0 |
|
self.out_counts = 0 |
|
self.count_list = [] |
|
self.count_txt_thickness = 0 |
|
self.count_reg_color = (0, 255, 0) |
|
self.region_thickness = 5 |
|
|
|
def set_args(self, |
|
imw, |
|
imh, |
|
colormap=cv2.COLORMAP_JET, |
|
heatmap_alpha=0.5, |
|
view_img=False, |
|
count_reg_pts=None, |
|
count_txt_thickness=2, |
|
count_reg_color=(255, 0, 255), |
|
region_thickness=5): |
|
""" |
|
Configures the heatmap colormap, width, height and display parameters. |
|
|
|
Args: |
|
colormap (cv2.COLORMAP): The colormap to be set. |
|
imw (int): The width of the frame. |
|
imh (int): The height of the frame. |
|
heatmap_alpha (float): alpha value for heatmap display |
|
view_img (bool): Flag indicating frame display |
|
count_reg_pts (list): Object counting region points |
|
count_txt_thickness (int): Text thickness for object counting display |
|
count_reg_color (RGB color): Color of object counting region |
|
region_thickness (int): Object counting Region thickness |
|
""" |
|
self.imw = imw |
|
self.imh = imh |
|
self.colormap = colormap |
|
self.heatmap_alpha = heatmap_alpha |
|
self.view_img = view_img |
|
|
|
self.heatmap = np.zeros((int(self.imw), int(self.imh)), dtype=np.float32) # Heatmap new frame |
|
|
|
if count_reg_pts is not None: |
|
self.track_history = defaultdict(list) |
|
self.count_reg_pts = count_reg_pts |
|
self.count_region = Polygon(self.count_reg_pts) |
|
|
|
self.count_txt_thickness = count_txt_thickness # Counting text thickness |
|
self.count_reg_color = count_reg_color |
|
self.region_thickness = region_thickness |
|
|
|
def extract_results(self, tracks): |
|
""" |
|
Extracts results from the provided data. |
|
|
|
Args: |
|
tracks (list): List of tracks obtained from the object tracking process. |
|
""" |
|
self.boxes = tracks[0].boxes.xyxy.cpu() |
|
self.clss = tracks[0].boxes.cls.cpu().tolist() |
|
self.track_ids = tracks[0].boxes.id.int().cpu().tolist() |
|
|
|
def generate_heatmap(self, im0, tracks): |
|
""" |
|
Generate heatmap based on tracking data. |
|
|
|
Args: |
|
im0 (nd array): Image |
|
tracks (list): List of tracks obtained from the object tracking process. |
|
""" |
|
self.im0 = im0 |
|
if tracks[0].boxes.id is None: |
|
return self.im0 |
|
|
|
self.extract_results(tracks) |
|
self.annotator = Annotator(self.im0, self.count_txt_thickness, None) |
|
|
|
if self.count_reg_pts is not None: |
|
# Draw counting region |
|
self.annotator.draw_region(reg_pts=self.count_reg_pts, |
|
color=self.count_reg_color, |
|
thickness=self.region_thickness) |
|
|
|
for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids): |
|
self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1 |
|
|
|
# Store tracking hist |
|
track_line = self.track_history[track_id] |
|
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) |
|
if len(track_line) > 30: |
|
track_line.pop(0) |
|
|
|
# Count objects |
|
if self.count_region.contains(Point(track_line[-1])): |
|
if track_id not in self.count_list: |
|
self.count_list.append(track_id) |
|
if box[0] < self.count_region.centroid.x: |
|
self.out_counts += 1 |
|
else: |
|
self.in_counts += 1 |
|
else: |
|
for box, cls in zip(self.boxes, self.clss): |
|
self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1 |
|
|
|
# Normalize, apply colormap to heatmap and combine with original image |
|
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX) |
|
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap) |
|
|
|
if self.count_reg_pts is not None: |
|
incount_label = 'InCount : ' + f'{self.in_counts}' |
|
outcount_label = 'OutCount : ' + f'{self.out_counts}' |
|
self.annotator.count_labels(in_count=incount_label, out_count=outcount_label) |
|
|
|
im0_with_heatmap = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0) |
|
|
|
if self.view_img: |
|
self.display_frames(im0_with_heatmap) |
|
|
|
return im0_with_heatmap |
|
|
|
@staticmethod |
|
def display_frames(im0_with_heatmap): |
|
""" |
|
Display heatmap. |
|
|
|
Args: |
|
im0_with_heatmap (nd array): Original Image with heatmap |
|
""" |
|
cv2.imshow('Ultralytics Heatmap', im0_with_heatmap) |
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
return |
|
|
|
|
|
if __name__ == '__main__': |
|
Heatmap()
|
|
|