You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

178 lines
6.1 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import defaultdict
import cv2
import numpy as np
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.plotting import Annotator
check_requirements('shapely>=2.0.0')
from shapely.geometry import Polygon
from shapely.geometry.point import Point
class Heatmap:
"""A class to draw heatmaps in real-time video stream based on their tracks."""
def __init__(self):
"""Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters."""
# Visual information
self.annotator = None
self.view_img = False
# Image information
self.imw = None
self.imh = None
self.im0 = None
# Heatmap colormap and heatmap np array
self.colormap = None
self.heatmap = None
self.heatmap_alpha = 0.5
# Predict/track information
self.boxes = None
self.track_ids = None
self.clss = None
self.track_history = None
# Counting info
self.count_reg_pts = None
self.count_region = None
self.in_counts = 0
self.out_counts = 0
self.count_list = []
self.count_txt_thickness = 0
self.count_reg_color = (0, 255, 0)
self.region_thickness = 5
def set_args(self,
imw,
imh,
colormap=cv2.COLORMAP_JET,
heatmap_alpha=0.5,
view_img=False,
count_reg_pts=None,
count_txt_thickness=2,
count_reg_color=(255, 0, 255),
region_thickness=5):
"""
Configures the heatmap colormap, width, height and display parameters.
Args:
colormap (cv2.COLORMAP): The colormap to be set.
imw (int): The width of the frame.
imh (int): The height of the frame.
heatmap_alpha (float): alpha value for heatmap display
view_img (bool): Flag indicating frame display
count_reg_pts (list): Object counting region points
count_txt_thickness (int): Text thickness for object counting display
count_reg_color (RGB color): Color of object counting region
region_thickness (int): Object counting Region thickness
"""
self.imw = imw
self.imh = imh
self.colormap = colormap
self.heatmap_alpha = heatmap_alpha
self.view_img = view_img
self.heatmap = np.zeros((int(self.imw), int(self.imh)), dtype=np.float32) # Heatmap new frame
if count_reg_pts is not None:
self.track_history = defaultdict(list)
self.count_reg_pts = count_reg_pts
self.count_region = Polygon(self.count_reg_pts)
self.count_txt_thickness = count_txt_thickness # Counting text thickness
self.count_reg_color = count_reg_color
self.region_thickness = region_thickness
def extract_results(self, tracks):
"""
Extracts results from the provided data.
Args:
tracks (list): List of tracks obtained from the object tracking process.
"""
self.boxes = tracks[0].boxes.xyxy.cpu()
self.clss = tracks[0].boxes.cls.cpu().tolist()
self.track_ids = tracks[0].boxes.id.int().cpu().tolist()
def generate_heatmap(self, im0, tracks):
"""
Generate heatmap based on tracking data.
Args:
im0 (nd array): Image
tracks (list): List of tracks obtained from the object tracking process.
"""
self.im0 = im0
if tracks[0].boxes.id is None:
return self.im0
self.extract_results(tracks)
self.annotator = Annotator(self.im0, self.count_txt_thickness, None)
if self.count_reg_pts is not None:
# Draw counting region
self.annotator.draw_region(reg_pts=self.count_reg_pts,
color=self.count_reg_color,
thickness=self.region_thickness)
for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids):
self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1
# Store tracking hist
track_line = self.track_history[track_id]
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
if len(track_line) > 30:
track_line.pop(0)
# Count objects
if self.count_region.contains(Point(track_line[-1])):
if track_id not in self.count_list:
self.count_list.append(track_id)
if box[0] < self.count_region.centroid.x:
self.out_counts += 1
else:
self.in_counts += 1
else:
for box, cls in zip(self.boxes, self.clss):
self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1
# Normalize, apply colormap to heatmap and combine with original image
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
if self.count_reg_pts is not None:
incount_label = 'InCount : ' + f'{self.in_counts}'
outcount_label = 'OutCount : ' + f'{self.out_counts}'
self.annotator.count_labels(in_count=incount_label, out_count=outcount_label)
im0_with_heatmap = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)
if self.view_img:
self.display_frames(im0_with_heatmap)
return im0_with_heatmap
@staticmethod
def display_frames(im0_with_heatmap):
"""
Display heatmap.
Args:
im0_with_heatmap (nd array): Original Image with heatmap
"""
cv2.imshow('Ultralytics Heatmap', im0_with_heatmap)
if cv2.waitKey(1) & 0xFF == ord('q'):
return
if __name__ == '__main__':
Heatmap()