# Ultralytics YOLO 🚀, AGPL-3.0 license import threading import time from http import HTTPStatus from pathlib import Path import requests from hub_sdk import HUB_WEB_ROOT, HUBClient from ultralytics.hub.utils import HELP_MSG, PREFIX, TQDM from ultralytics.utils import LOGGER, SETTINGS, __version__, checks, emojis, is_colab from ultralytics.utils.errors import HUBModelError AGENT_NAME = f"python-{__version__}-colab" if is_colab() else f"python-{__version__}-local" class HUBTrainingSession: """ HUB training session for Ultralytics HUB YOLO models. Handles model initialization, heartbeats, and checkpointing. Attributes: agent_id (str): Identifier for the instance communicating with the server. model_id (str): Identifier for the YOLO model being trained. model_url (str): URL for the model in Ultralytics HUB. api_url (str): API URL for the model in Ultralytics HUB. auth_header (dict): Authentication header for the Ultralytics HUB API requests. rate_limits (dict): Rate limits for different API calls (in seconds). timers (dict): Timers for rate limiting. metrics_queue (dict): Queue for the model's metrics. model (dict): Model data fetched from Ultralytics HUB. alive (bool): Indicates if the heartbeat loop is active. """ def __init__(self, identifier): """ Initialize the HUBTrainingSession with the provided model identifier. Args: identifier (str): Model identifier used to initialize the HUB training session. It can be a URL string or a model key with specific format. Raises: ValueError: If the provided model identifier is invalid. ConnectionError: If connecting with global API key is not supported. """ self.rate_limits = { "metrics": 3.0, "ckpt": 900.0, "heartbeat": 300.0, } # rate limits (seconds) self.metrics_queue = {} # holds metrics for each epoch until upload self.timers = {} # holds timers in ultralytics/utils/callbacks/hub.py # Parse input api_key, model_id, self.filename = self._parse_identifier(identifier) # Get credentials active_key = api_key or SETTINGS.get("api_key") credentials = {"api_key": active_key} if active_key else None # set credentials # Initialize client self.client = HUBClient(credentials) if model_id: self.load_model(model_id) # load existing model else: self.model = self.client.model() # load empty model def load_model(self, model_id): # Initialize model self.model = self.client.model(model_id) self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}" self._set_train_args() # Start heartbeats for HUB to monitor agent self.model.start_heartbeat(self.rate_limits["heartbeat"]) LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀") def create_model(self, model_args): # Initialize model payload = { "config": { "batchSize": model_args.get("batch", -1), "epochs": model_args.get("epochs", 300), "imageSize": model_args.get("imgsz", 640), "patience": model_args.get("patience", 100), "device": model_args.get("device", ""), "cache": model_args.get("cache", "ram"), }, "dataset": {"name": model_args.get("data")}, "lineage": { "architecture": { "name": self.filename.replace(".pt", "").replace(".yaml", ""), }, "parent": {}, }, "meta": {"name": self.filename}, } if self.filename.endswith(".pt"): payload["lineage"]["parent"]["name"] = self.filename self.model.create_model(payload) # Model could not be created # TODO: improve error handling if not self.model.id: return self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}" # Start heartbeats for HUB to monitor agent self.model.start_heartbeat(self.rate_limits["heartbeat"]) LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀") def _parse_identifier(self, identifier): """ Parses the given identifier to determine the type of identifier and extract relevant components. The method supports different identifier formats: - A HUB URL, which starts with HUB_WEB_ROOT followed by '/models/' - An identifier containing an API key and a model ID separated by an underscore - An identifier that is solely a model ID of a fixed length - A local filename that ends with '.pt' or '.yaml' Args: identifier (str): The identifier string to be parsed. Returns: (tuple): A tuple containing the API key, model ID, and filename as applicable. Raises: HUBModelError: If the identifier format is not recognized. """ # Initialize variables api_key, model_id, filename = None, None, None # Check if identifier is a HUB URL if identifier.startswith(f"{HUB_WEB_ROOT}/models/"): # Extract the model_id after the HUB_WEB_ROOT URL model_id = identifier.split(f"{HUB_WEB_ROOT}/models/")[-1] else: # Split the identifier based on underscores only if it's not a HUB URL parts = identifier.split("_") # Check if identifier is in the format of API key and model ID if len(parts) == 2 and len(parts[0]) == 42 and len(parts[1]) == 20: api_key, model_id = parts # Check if identifier is a single model ID elif len(parts) == 1 and len(parts[0]) == 20: model_id = parts[0] # Check if identifier is a local filename elif identifier.endswith(".pt") or identifier.endswith(".yaml"): filename = identifier else: raise HUBModelError( f"model='{identifier}' could not be parsed. Check format is correct. " f"Supported formats are Ultralytics HUB URL, apiKey_modelId, modelId, local pt or yaml file." ) return api_key, model_id, filename def _set_train_args(self, **kwargs): if self.model.is_trained(): # Model is already trained raise ValueError(emojis(f"Model is already trained and uploaded to {self.model_url} 🚀")) if self.model.is_resumable(): # Model has saved weights self.train_args = {"data": self.model.get_dataset_url(), "resume": True} self.model_file = self.model.get_weights_url("last") else: # Model has no saved weights def get_train_args(config): return { "batch": config["batchSize"], "epochs": config["epochs"], "imgsz": config["imageSize"], "patience": config["patience"], "device": config["device"], "cache": config["cache"], "data": self.model.get_dataset_url(), } self.train_args = get_train_args(self.model.data.get("config")) # Set the model file as either a *.pt or *.yaml file self.model_file = ( self.model.get_weights_url("parent") if self.model.is_pretrained() else self.model.get_architecture() ) if not self.train_args.get("data"): raise ValueError("Dataset may still be processing. Please wait a minute and try again.") # RF fix self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False) # YOLOv5->YOLOv5u self.model_id = self.model.id def request_queue( self, request_func, retry=3, timeout=30, thread=True, verbose=True, progress_total=None, *args, **kwargs, ): def retry_request(): t0 = time.time() # Record the start time for the timeout for i in range(retry + 1): if (time.time() - t0) > timeout: LOGGER.warning(f"{PREFIX}Timeout for request reached. {HELP_MSG}") break # Timeout reached, exit loop response = request_func(*args, **kwargs) if progress_total: self._show_upload_progress(progress_total, response) if response is None: LOGGER.warning(f"{PREFIX}Received no response from the request. {HELP_MSG}") time.sleep(2**i) # Exponential backoff before retrying continue # Skip further processing and retry if HTTPStatus.OK <= response.status_code < HTTPStatus.MULTIPLE_CHOICES: return response # Success, no need to retry if i == 0: # Initial attempt, check status code and provide messages message = self._get_failure_message(response, retry, timeout) if verbose: LOGGER.warning(f"{PREFIX}{message} {HELP_MSG} ({response.status_code})") if not self._should_retry(response.status_code): LOGGER.warning(f"{PREFIX}Request failed. {HELP_MSG} ({response.status_code}") break # Not an error that should be retried, exit loop time.sleep(2**i) # Exponential backoff for retries return response if thread: # Start a new thread to run the retry_request function threading.Thread(target=retry_request, daemon=True).start() else: # If running in the main thread, call retry_request directly return retry_request() def _should_retry(self, status_code): # Status codes that trigger retries retry_codes = { HTTPStatus.REQUEST_TIMEOUT, HTTPStatus.BAD_GATEWAY, HTTPStatus.GATEWAY_TIMEOUT, } return True if status_code in retry_codes else False def _get_failure_message(self, response: requests.Response, retry: int, timeout: int): """ Generate a retry message based on the response status code. Args: response: The HTTP response object. retry: The number of retry attempts allowed. timeout: The maximum timeout duration. Returns: str: The retry message. """ if self._should_retry(response.status_code): return f"Retrying {retry}x for {timeout}s." if retry else "" elif response.status_code == HTTPStatus.TOO_MANY_REQUESTS: # rate limit headers = response.headers return ( f"Rate limit reached ({headers['X-RateLimit-Remaining']}/{headers['X-RateLimit-Limit']}). " f"Please retry after {headers['Retry-After']}s." ) else: try: return response.json().get("message", "No JSON message.") except AttributeError: return "Unable to read JSON." def upload_metrics(self): """Upload model metrics to Ultralytics HUB.""" return self.request_queue(self.model.upload_metrics, metrics=self.metrics_queue.copy(), thread=True) def upload_model( self, epoch: int, weights: str, is_best: bool = False, map: float = 0.0, final: bool = False, ) -> None: """ Upload a model checkpoint to Ultralytics HUB. Args: epoch (int): The current training epoch. weights (str): Path to the model weights file. is_best (bool): Indicates if the current model is the best one so far. map (float): Mean average precision of the model. final (bool): Indicates if the model is the final model after training. """ if Path(weights).is_file(): progress_total = Path(weights).stat().st_size if final else None # Only show progress if final self.request_queue( self.model.upload_model, epoch=epoch, weights=weights, is_best=is_best, map=map, final=final, retry=10, timeout=3600, thread=not final, progress_total=progress_total, ) else: LOGGER.warning(f"{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.") def _show_upload_progress(self, content_length: int, response: requests.Response) -> None: """ Display a progress bar to track the upload progress of a file download. Args: content_length (int): The total size of the content to be downloaded in bytes. response (requests.Response): The response object from the file download request. Returns: (None) """ with TQDM(total=content_length, unit="B", unit_scale=True, unit_divisor=1024) as pbar: for data in response.iter_content(chunk_size=1024): pbar.update(len(data))