[![Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml) ## Install ```bash pip install ultralytics ``` Development ``` git clone https://github.com/ultralytics/ultralytics cd ultralytics pip install -e . ``` ## Usage ### 1. CLI To simply use the latest Ultralytics YOLO models ```bash yolo task=detect mode=train model=yolov8n.yaml args=... classify predict yolov8n-cls.yaml args=... segment val yolov8n-seg.yaml args=... export yolov8n.pt format=onnx ``` ### 2. Python SDK To use pythonic interface of Ultralytics YOLO model ```python from ultralytics import YOLO model = YOLO("yolov8n.yaml") # create a new model from scratch model = YOLO( "yolov8n.pt" ) # load a pretrained model (recommended for best training results) results = model.train(data="coco128.yaml", epochs=100, imgsz=640) results = model.val() results = model.predict(source="bus.jpg") success = model.export(format="onnx") ``` ## Models | Model | size
(pixels) | mAPval
50-95 | Speed
CPU
(ms) | Speed
T4 GPU
(ms) | params
(M) | FLOPs
(B) | | ------------------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- | | [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | - | - | **1.9** | **4.5** | | [YOLOv6n](url) | 640 | 35.9 | - | - | 4.3 | 11.1 | | **[YOLOv8n](url)** | 640 | **37.5** | - | - | 3.2 | 8.9 | | | | | | | | | | [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | - | - | 7.2 | 16.5 | | [YOLOv6s](url) | 640 | 43.5 | - | - | 17.2 | 44.2 | | **[YOLOv8s](url)** | 640 | **44.7** | - | - | 11.2 | 28.8 | | | | | | | | | | [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | - | - | 21.2 | 49.0 | | [YOLOv6m](url) | 640 | 49.5 | - | - | 34.3 | 82.2 | | **[YOLOv8m](url)** | 640 | **50.3** | - | - | 25.9 | 79.3 | | | | | | | | | | [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | - | - | 46.5 | 109.1 | | [YOLOv6l](url) | 640 | 52.5 | - | - | 58.5 | 144.0 | | [YOLOv7](url) | 640 | 51.2 | - | - | 36.9 | 104.7 | | **[YOLOv8l](url)** | 640 | **52.8** | - | - | 43.7 | 165.7 | | | | | | | | | | [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | - | - | 86.7 | 205.7 | | [YOLOv7-X](url) | 640 | 52.9 | - | - | 71.3 | 189.9 | | **[YOLOv8x](url)** | 640 | **53.7** | - | - | 68.2 | 258.5 | | | | | | | | | | [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt) | 1280 | 55.0 | - | - | 140.7 | 839.2 | | [YOLOv7-E6E](url) | 1280 | 56.8 | - | - | 151.7 | 843.2 | | **[YOLOv8x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)**
+TTA | 1280 | -
- | -
- | -
- | 97.4 | 1047.2
- | If you're looking to modify YOLO for R&D or to build on top of it, refer to [Using Trainer](<>) Guide on our docs.