import json import platform from collections import OrderedDict, namedtuple from pathlib import Path from urllib.parse import urlparse import cv2 import numpy as np import torch import torch.nn as nn from PIL import Image from ultralytics.yolo.utils import LOGGER, ROOT from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version from ultralytics.yolo.utils.downloads import attempt_download, is_url from ultralytics.yolo.utils.files import yaml_load from ultralytics.yolo.utils.ops import xywh2xyxy class AutoBackend(nn.Module): # YOLOv5 MultiBackend class for python inference on various backends def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True): # Usage: # PyTorch: weights = *.pt # TorchScript: *.torchscript # ONNX Runtime: *.onnx # ONNX OpenCV DNN: *.onnx --dnn # OpenVINO: *.xml # CoreML: *.mlmodel # TensorRT: *.engine # TensorFlow SavedModel: *_saved_model # TensorFlow GraphDef: *.pb # TensorFlow Lite: *.tflite # TensorFlow Edge TPU: *_edgetpu.tflite # PaddlePaddle: *_paddle_model super().__init__() w = str(weights[0] if isinstance(weights, list) else weights) nn_module = isinstance(weights, torch.nn.Module) pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w) fp16 &= pt or jit or onnx or engine or nn_module # FP16 nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH) stride = 32 # default stride cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA if not (pt or triton or nn_module): w = attempt_download(w) # download if not local # NOTE: special case: in-memory pytorch model if nn_module: model = weights.to(device) model = model.fuse() if fuse else model names = model.module.names if hasattr(model, 'module') else model.names # get class names model.half() if fp16 else model.float() self.model = model # explicitly assign for to(), cpu(), cuda(), half() elif pt: # PyTorch from ultralytics.nn.tasks import attempt_load_weights model = attempt_load_weights(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse) stride = max(int(model.stride.max()), 32) # model stride names = model.module.names if hasattr(model, 'module') else model.names # get class names model.half() if fp16 else model.float() self.model = model # explicitly assign for to(), cpu(), cuda(), half() elif jit: # TorchScript LOGGER.info(f'Loading {w} for TorchScript inference...') extra_files = {'config.txt': ''} # model metadata model = torch.jit.load(w, _extra_files=extra_files, map_location=device) model.half() if fp16 else model.float() if extra_files['config.txt']: # load metadata dict d = json.loads(extra_files['config.txt'], object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()}) stride, names = int(d['stride']), d['names'] elif dnn: # ONNX OpenCV DNN LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') check_requirements('opencv-python>=4.5.4') net = cv2.dnn.readNetFromONNX(w) elif onnx: # ONNX Runtime LOGGER.info(f'Loading {w} for ONNX Runtime inference...') check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) import onnxruntime providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(w, providers=providers) output_names = [x.name for x in session.get_outputs()] meta = session.get_modelmeta().custom_metadata_map # metadata if 'stride' in meta: stride, names = int(meta['stride']), eval(meta['names']) elif xml: # OpenVINO LOGGER.info(f'Loading {w} for OpenVINO inference...') check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/ from openvino.runtime import Core, Layout, get_batch # noqa ie = Core() if not Path(w).is_file(): # if not *.xml w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin')) if network.get_parameters()[0].get_layout().empty: network.get_parameters()[0].set_layout(Layout("NCHW")) batch_dim = get_batch(network) if batch_dim.is_static: batch_size = batch_dim.get_length() executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2 stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata elif engine: # TensorRT LOGGER.info(f'Loading {w} for TensorRT inference...') import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 if device.type == 'cpu': device = torch.device('cuda:0') Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) logger = trt.Logger(trt.Logger.INFO) with open(w, 'rb') as f, trt.Runtime(logger) as runtime: model = runtime.deserialize_cuda_engine(f.read()) context = model.create_execution_context() bindings = OrderedDict() output_names = [] fp16 = False # default updated below dynamic = False for i in range(model.num_bindings): name = model.get_binding_name(i) dtype = trt.nptype(model.get_binding_dtype(i)) if model.binding_is_input(i): if -1 in tuple(model.get_binding_shape(i)): # dynamic dynamic = True context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2])) if dtype == np.float16: fp16 = True else: # output output_names.append(name) shape = tuple(context.get_binding_shape(i)) im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size elif coreml: # CoreML LOGGER.info(f'Loading {w} for CoreML inference...') import coremltools as ct model = ct.models.MLModel(w) elif saved_model: # TF SavedModel LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...') import tensorflow as tf keras = False # assume TF1 saved_model model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w) elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...') import tensorflow as tf def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped ge = x.graph.as_graph_element return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) def gd_outputs(gd): name_list, input_list = [], [] for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef name_list.append(node.name) input_list.extend(node.input) return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp')) gd = tf.Graph().as_graph_def() # TF GraphDef with open(w, 'rb') as f: gd.ParseFromString(f.read()) frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd)) elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu from tflite_runtime.interpreter import Interpreter, load_delegate except ImportError: import tensorflow as tf Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate, if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') delegate = { 'Linux': 'libedgetpu.so.1', 'Darwin': 'libedgetpu.1.dylib', 'Windows': 'edgetpu.dll'}[platform.system()] interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)]) else: # TFLite LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') interpreter = Interpreter(model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs elif tfjs: # TF.js raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported') elif paddle: # PaddlePaddle LOGGER.info(f'Loading {w} for PaddlePaddle inference...') check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle') import paddle.inference as pdi if not Path(w).is_file(): # if not *.pdmodel w = next(Path(w).rglob('*.pdmodel')) # get *.xml file from *_openvino_model dir weights = Path(w).with_suffix('.pdiparams') config = pdi.Config(str(w), str(weights)) if cuda: config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0) predictor = pdi.create_predictor(config) input_handle = predictor.get_input_handle(predictor.get_input_names()[0]) output_names = predictor.get_output_names() elif triton: # NVIDIA Triton Inference Server LOGGER.info('Triton Inference Server not supported...') ''' TODO: check_requirements('tritonclient[all]') from utils.triton import TritonRemoteModel model = TritonRemoteModel(url=w) nhwc = model.runtime.startswith("tensorflow") ''' else: raise NotImplementedError(f'ERROR: {w} is not a supported format') # class names if 'names' not in locals(): names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)} if names[0] == 'n01440764' and len(names) == 1000: # ImageNet names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names self.__dict__.update(locals()) # assign all variables to self def forward(self, im, augment=False, visualize=False): # YOLOv5 MultiBackend inference b, ch, h, w = im.shape # batch, channel, height, width if self.fp16 and im.dtype != torch.float16: im = im.half() # to FP16 if self.nhwc: im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3) if self.pt or self.nn_module: # PyTorch y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im) elif self.jit: # TorchScript y = self.model(im) elif self.dnn: # ONNX OpenCV DNN im = im.cpu().numpy() # torch to numpy self.net.setInput(im) y = self.net.forward() elif self.onnx: # ONNX Runtime im = im.cpu().numpy() # torch to numpy y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im}) elif self.xml: # OpenVINO im = im.cpu().numpy() # FP32 y = list(self.executable_network([im]).values()) elif self.engine: # TensorRT if self.dynamic and im.shape != self.bindings['images'].shape: i = self.model.get_binding_index('images') self.context.set_binding_shape(i, im.shape) # reshape if dynamic self.bindings['images'] = self.bindings['images']._replace(shape=im.shape) for name in self.output_names: i = self.model.get_binding_index(name) self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i))) s = self.bindings['images'].shape assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" self.binding_addrs['images'] = int(im.data_ptr()) self.context.execute_v2(list(self.binding_addrs.values())) y = [self.bindings[x].data for x in sorted(self.output_names)] elif self.coreml: # CoreML im = im.cpu().numpy() im = Image.fromarray((im[0] * 255).astype('uint8')) # im = im.resize((192, 320), Image.ANTIALIAS) y = self.model.predict({'image': im}) # coordinates are xywh normalized if 'confidence' in y: box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float) y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) else: y = list(reversed(y.values())) # reversed for segmentation models (pred, proto) elif self.paddle: # PaddlePaddle im = im.cpu().numpy().astype(np.float32) self.input_handle.copy_from_cpu(im) self.predictor.run() y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names] elif self.triton: # NVIDIA Triton Inference Server y = self.model(im) else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) im = im.cpu().numpy() if self.saved_model: # SavedModel y = self.model(im, training=False) if self.keras else self.model(im) elif self.pb: # GraphDef y = self.frozen_func(x=self.tf.constant(im)) else: # Lite or Edge TPU input = self.input_details[0] int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model if int8: scale, zero_point = input['quantization'] im = (im / scale + zero_point).astype(np.uint8) # de-scale self.interpreter.set_tensor(input['index'], im) self.interpreter.invoke() y = [] for output in self.output_details: x = self.interpreter.get_tensor(output['index']) if int8: scale, zero_point = output['quantization'] x = (x.astype(np.float32) - zero_point) * scale # re-scale y.append(x) y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y] y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels if isinstance(y, (list, tuple)): return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y] else: return self.from_numpy(y) def from_numpy(self, x): return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x def warmup(self, imgsz=(1, 3, 640, 640)): # Warmup model by running inference once warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module if any(warmup_types) and (self.device.type != 'cpu' or self.triton): im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input for _ in range(2 if self.jit else 1): # self.forward(im) # warmup @staticmethod def _model_type(p='path/to/model.pt'): # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle] from ultralytics.yolo.engine.exporter import export_formats sf = list(export_formats().Suffix) # export suffixes if not is_url(p, check=False) and not isinstance(p, str): check_suffix(p, sf) # checks url = urlparse(p) # if url may be Triton inference server types = [s in Path(p).name for s in sf] types[8] &= not types[9] # tflite &= not edgetpu triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc]) return types + [triton] @staticmethod def _load_metadata(f=Path('path/to/meta.yaml')): from ultralytics.yolo.utils.files import yaml_load # Load metadata from meta.yaml if it exists if f.exists(): d = yaml_load(f) return d['stride'], d['names'] # assign stride, names return None, None