## Ultralytics YOLO Default training settings and hyperparameters for medium-augmentation COCO training ### Setting the operation type ???+ note "Operation" | Key | Value | Description | |--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | task | `detect` | Set the task via CLI. See Tasks for all supported tasks like - `detect`, `segment`, `classify`.
- `init` is a special case that creates a copy of default.yaml configs to the current working dir | | mode | `train` | Set the mode via CLI. It can be `train`, `val`, `predict` | | resume | `False` | Resume last given task when set to `True`.
Resume from a given checkpoint is `model.pt` is passed | | model | null | Set the model. Format can differ for task type. Supports `model_name`, `model.yaml` & `model.pt` | | data | null | Set the data. Format can differ for task type. Supports `data.yaml`, `data_folder`, `dataset_name`| ### Training settings ??? note "Train" | Key | Value | Description | |------------------|--------|---------------------------------------------------------------------------------| | device | '' | cuda device, i.e. 0 or 0,1,2,3 or cpu. `''` selects available cuda 0 device | | epochs | 100 | Number of epochs to train | | workers | 8 | Number of cpu workers used per process. Scales automatically with DDP | | batch_size | 16 | Batch size of the dataloader | | imgsz | 640 | Image size of data in dataloader | | optimizer | SGD | Optimizer used. Supported optimizer are: `Adam`, `SGD`, `RMSProp` | | single_cls | False | Train on multi-class data as single-class | | image_weights | False | Use weighted image selection for training | | rect | False | Enable rectangular training | | cos_lr | False | Use cosine LR scheduler | | lr0 | 0.01 | Initial learning rate | | lrf | 0.01 | Final OneCycleLR learning rate | | momentum | 0.937 | Use as `momentum` for SGD and `beta1` for Adam | | weight_decay | 0.0005 | Optimizer weight decay | | warmup_epochs | 3.0 | Warmup epochs. Fractions are ok. | | warmup_momentum | 0.8 | Warmup initial momentum | | warmup_bias_lr | 0.1 | Warmup initial bias lr | | box | 0.05 | Box loss gain | | cls | 0.5 | cls loss gain | | cls_pw | 1.0 | cls BCELoss positive_weight | | obj | 1.0 | bj loss gain (scale with pixels) | | obj_pw | 1.0 | obj BCELoss positive_weight | | iou_t | 0.20 | IOU training threshold | | anchor_t | 4.0 | anchor-multiple threshold | | fl_gamma | 0.0 | focal loss gamma | | label_smoothing | 0.0 | | | nbs | 64 | nominal batch size | | overlap_mask | `True` | **Segmentation**: Use mask overlapping during training | | mask_ratio | 4 | **Segmentation**: Set mask downsampling | | dropout | `False`| **Classification**: Use dropout while training | ### Prediction Settings ??? note "Prediction" | Key | Value | Description | |----------------|----------------------|----------------------------------------------------| | source | `ultralytics/assets` | Input source. Accepts image, folder, video, url | | view_img | `False` | View the prediction images | | save_txt | `False` | Save the results in a txt file | | save_conf | `False` | Save the condidence scores | | save_crop | `Fasle` | | | hide_labels | `False` | Hide the labels | | hide_conf | `False` | Hide the confidence scores | | vid_stride | `False` | Input video frame-rate stride | | line_thickness | `3` | Bounding-box thickness (pixels) | | visualize | `False` | Visualize model features | | augment | `False` | Augmented inference | | agnostic_nms | `False` | Class-agnostic NMS | | retina_masks | `False` | **Segmentation:** High resolution masks | ### Validation settings ??? note "Validation" | Key | Value | Description | |-------------|---------|-----------------------------------| | noval | `False` | ??? | | save_json | `False` | | | save_hybrid | `False` | | | conf_thres | `0.001` | Confidence threshold | | iou_thres | `0.6` | IoU threshold | | max_det | `300` | Maximum number of detections | | half | `True` | Use .half() mode. | | dnn | `False` | Use OpenCV DNN for ONNX inference | | plots | `False` | | ### Augmentation settings ??? note "Augmentation" | hsv_h | 0.015 | Image HSV-Hue augmentation (fraction) | |-------------|-------|-------------------------------------------------| | hsv_s | 0.7 | Image HSV-Saturation augmentation (fraction) | | hsv_v | 0.4 | Image HSV-Value augmentation (fraction) | | degrees | 0.0 | Image rotation (+/- deg) | | translate | 0.1 | Image translation (+/- fraction) | | scale | 0.5 | Image scale (+/- gain) | | shear | 0.0 | Image shear (+/- deg) | | perspective | 0.0 | Image perspective (+/- fraction), range 0-0.001 | | flipud | 0.0 | Image flip up-down (probability) | | fliplr | 0.5 | Image flip left-right (probability) | | mosaic | 1.0 | Image mosaic (probability) | | mixup | 0.0 | Image mixup (probability) | | copy_paste | 0.0 | Segment copy-paste (probability) | ### Logging, checkpoints, plotting and file management ??? note "files" | Key | Value | Description | |-----------|---------|---------------------------------------------------------------------------------------------| | project: | 'runs' | The project name | | name: | 'exp' | The run name. `exp` gets automatically incremented if not specified, i.e, `exp`, `exp2` ... | | exist_ok: | `False` | ??? | | plots | `False` | **Validation**: Save plots while validation | | nosave | `False` | Don't save any plots, models or files |