Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of predefined classes. The output of an image classifier is a single class label and a confidence score. Image classification is useful when you need to know only what class an image belongs to and don't need to know where objects of that class are located or what their exact shape is. !!! tip "Tip" YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet. [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8/cls){.md-button .md-button--primary} ## Train Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments see the [Configuration](../config.md) page. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-cls.yaml") # build a new model from scratch model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training) # Train the model results = model.train(data="mnist160", epochs=100, imgsz=64) ``` === "CLI" ```bash yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64 ``` ## Val Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-cls.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom model # Validate the model results = model.val() # no arguments needed, dataset and settings remembered ``` === "CLI" ```bash yolo classify val model=yolov8n-cls.pt # val official model yolo classify val model=path/to/best.pt # val custom model ``` ## Predict Use a trained YOLOv8n-cls model to run predictions on images. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-cls.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom model # Predict with the model results = model("https://ultralytics.com/images/bus.jpg") # predict on an image ``` === "CLI" ```bash yolo classify predict model=yolov8n-cls.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model yolo classify predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model ``` ## Export Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-cls.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom trained # Export the model model.export(format="onnx") ``` === "CLI" ```bash yolo export model=yolov8n-cls.pt format=onnx # export official model yolo export model=path/to/best.pt format=onnx # export custom trained model ``` Available YOLOv8-cls export formats include: | Format | `format=` | Model | |----------------------------------------------------------------------------|---------------|-------------------------------| | [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | | [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | | [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | | [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | | [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | | [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | | [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | | [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | | [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | | [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | | [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | | [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` |