import torch from ultralytics.yolo.utils.checks import check_yaml from ultralytics.yolo.utils.modeling.tasks import DetectionModel def test_model_parser(): cfg = check_yaml("../assets/dummy_model.yaml") # check YAML # Create model model = DetectionModel(cfg) print(model) ''' # Options if opt.line_profile: # profile layer by layer model(im, profile=True) elif opt.profile: # profile forward-backward results = profile(input=im, ops=[model], n=3) elif opt.test: # test all models for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'): try: _ = Model(cfg) except Exception as e: print(f'Error in {cfg}: {e}') else: # report fused model summary model.fuse() ''' if __name__ == "__main__": test_model_parser()