# Ultralytics YOLO 🚀, AGPL-3.0 license """ Model head modules """ import math import torch import torch.nn as nn from torch.nn.init import constant_, xavier_uniform_ from ultralytics.utils.tal import dist2bbox, make_anchors from .block import DFL, Proto from .conv import Conv from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer from .utils import bias_init_with_prob, linear_init_ __all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder' class Detect(nn.Module): """YOLOv8 Detect head for detection models.""" dynamic = False # force grid reconstruction export = False # export mode shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=()): # detection layer super().__init__() self.nc = nc # number of classes self.nl = len(ch) # number of detection layers self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x) self.no = nc + self.reg_max * 4 # number of outputs per anchor self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch) self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch) self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() def forward(self, x): """Concatenates and returns predicted bounding boxes and class probabilities.""" shape = x[0].shape # BCHW for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) if self.training: return x elif self.dynamic or self.shape != shape: self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) self.shape = shape x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2) if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops box = x_cat[:, :self.reg_max * 4] cls = x_cat[:, self.reg_max * 4:] else: box, cls = x_cat.split((self.reg_max * 4, self.nc), 1) dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides y = torch.cat((dbox, cls.sigmoid()), 1) return y if self.export else (y, x) def bias_init(self): """Initialize Detect() biases, WARNING: requires stride availability.""" m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) class Segment(Detect): """YOLOv8 Segment head for segmentation models.""" def __init__(self, nc=80, nm=32, npr=256, ch=()): """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.""" super().__init__(nc, ch) self.nm = nm # number of masks self.npr = npr # number of protos self.proto = Proto(ch[0], self.npr, self.nm) # protos self.detect = Detect.forward c4 = max(ch[0] // 4, self.nm) self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) def forward(self, x): """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.""" p = self.proto(x[0]) # mask protos bs = p.shape[0] # batch size mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients x = self.detect(self, x) if self.training: return x, mc, p return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p)) class Pose(Detect): """YOLOv8 Pose head for keypoints models.""" def __init__(self, nc=80, kpt_shape=(17, 3), ch=()): """Initialize YOLO network with default parameters and Convolutional Layers.""" super().__init__(nc, ch) self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total self.detect = Detect.forward c4 = max(ch[0] // 4, self.nk) self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch) def forward(self, x): """Perform forward pass through YOLO model and return predictions.""" bs = x[0].shape[0] # batch size kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w) x = self.detect(self, x) if self.training: return x, kpt pred_kpt = self.kpts_decode(bs, kpt) return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt)) def kpts_decode(self, bs, kpts): """Decodes keypoints.""" ndim = self.kpt_shape[1] if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug y = kpts.view(bs, *self.kpt_shape, -1) a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides if ndim == 3: a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2) return a.view(bs, self.nk, -1) else: y = kpts.clone() if ndim == 3: y[:, 2::3].sigmoid_() # inplace sigmoid y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides return y class Classify(nn.Module): """YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2).""" def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() c_ = 1280 # efficientnet_b0 size self.conv = Conv(c1, c_, k, s, p, g) self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) self.drop = nn.Dropout(p=0.0, inplace=True) self.linear = nn.Linear(c_, c2) # to x(b,c2) def forward(self, x): """Performs a forward pass of the YOLO model on input image data.""" if isinstance(x, list): x = torch.cat(x, 1) x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) return x if self.training else x.softmax(1) class RTDETRDecoder(nn.Module): export = False # export mode def __init__( self, nc=80, ch=(512, 1024, 2048), hd=256, # hidden dim nq=300, # num queries ndp=4, # num decoder points nh=8, # num head ndl=6, # num decoder layers d_ffn=1024, # dim of feedforward dropout=0., act=nn.ReLU(), eval_idx=-1, # training args nd=100, # num denoising label_noise_ratio=0.5, box_noise_scale=1.0, learnt_init_query=False): super().__init__() self.hidden_dim = hd self.nhead = nh self.nl = len(ch) # num level self.nc = nc self.num_queries = nq self.num_decoder_layers = ndl # backbone feature projection self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch) # NOTE: simplified version but it's not consistent with .pt weights. # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch) # Transformer module decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp) self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx) # denoising part self.denoising_class_embed = nn.Embedding(nc, hd) self.num_denoising = nd self.label_noise_ratio = label_noise_ratio self.box_noise_scale = box_noise_scale # decoder embedding self.learnt_init_query = learnt_init_query if learnt_init_query: self.tgt_embed = nn.Embedding(nq, hd) self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2) # encoder head self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd)) self.enc_score_head = nn.Linear(hd, nc) self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3) # decoder head self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)]) self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)]) self._reset_parameters() def forward(self, x, batch=None): from ultralytics.models.utils.ops import get_cdn_group # input projection and embedding feats, shapes = self._get_encoder_input(x) # prepare denoising training dn_embed, dn_bbox, attn_mask, dn_meta = \ get_cdn_group(batch, self.nc, self.num_queries, self.denoising_class_embed.weight, self.num_denoising, self.label_noise_ratio, self.box_noise_scale, self.training) embed, refer_bbox, enc_bboxes, enc_scores = \ self._get_decoder_input(feats, shapes, dn_embed, dn_bbox) # decoder dec_bboxes, dec_scores = self.decoder(embed, refer_bbox, feats, shapes, self.dec_bbox_head, self.dec_score_head, self.query_pos_head, attn_mask=attn_mask) x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta if self.training: return x # (bs, 300, 4+nc) y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1) return y if self.export else (y, x) def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2): anchors = [] for i, (h, w) in enumerate(shapes): grid_y, grid_x = torch.meshgrid(torch.arange(end=h, dtype=dtype, device=device), torch.arange(end=w, dtype=dtype, device=device), indexing='ij') grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2) valid_WH = torch.tensor([h, w], dtype=dtype, device=device) grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2) wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0 ** i) anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4) anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4) valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1 anchors = torch.log(anchors / (1 - anchors)) anchors = anchors.masked_fill(~valid_mask, float('inf')) return anchors, valid_mask def _get_encoder_input(self, x): # get projection features x = [self.input_proj[i](feat) for i, feat in enumerate(x)] # get encoder inputs feats = [] shapes = [] for feat in x: h, w = feat.shape[2:] # [b, c, h, w] -> [b, h*w, c] feats.append(feat.flatten(2).permute(0, 2, 1)) # [nl, 2] shapes.append([h, w]) # [b, h*w, c] feats = torch.cat(feats, 1) return feats, shapes def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None): bs = len(feats) # prepare input for decoder anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device) features = self.enc_output(valid_mask * feats) # bs, h*w, 256 enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc) # dynamic anchors + static content enc_outputs_bboxes = self.enc_bbox_head(features) + anchors # (bs, h*w, 4) # query selection # (bs, num_queries) topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1) # (bs, num_queries) batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1) # Unsigmoided refer_bbox = enc_outputs_bboxes[batch_ind, topk_ind].view(bs, self.num_queries, -1) # refer_bbox = torch.gather(enc_outputs_bboxes, 1, topk_ind.reshape(bs, self.num_queries).unsqueeze(-1).repeat(1, 1, 4)) enc_bboxes = refer_bbox.sigmoid() if dn_bbox is not None: refer_bbox = torch.cat([dn_bbox, refer_bbox], 1) if self.training: refer_bbox = refer_bbox.detach() enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1) if self.learnt_init_query: embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) else: embeddings = features[batch_ind, topk_ind].view(bs, self.num_queries, -1) if self.training: embeddings = embeddings.detach() if dn_embed is not None: embeddings = torch.cat([dn_embed, embeddings], 1) return embeddings, refer_bbox, enc_bboxes, enc_scores # TODO def _reset_parameters(self): # class and bbox head init bias_cls = bias_init_with_prob(0.01) / 80 * self.nc # NOTE: the weight initialization in `linear_init_` would cause NaN when training with custom datasets. # linear_init_(self.enc_score_head) constant_(self.enc_score_head.bias, bias_cls) constant_(self.enc_bbox_head.layers[-1].weight, 0.) constant_(self.enc_bbox_head.layers[-1].bias, 0.) for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head): # linear_init_(cls_) constant_(cls_.bias, bias_cls) constant_(reg_.layers[-1].weight, 0.) constant_(reg_.layers[-1].bias, 0.) linear_init_(self.enc_output[0]) xavier_uniform_(self.enc_output[0].weight) if self.learnt_init_query: xavier_uniform_(self.tgt_embed.weight) xavier_uniform_(self.query_pos_head.layers[0].weight) xavier_uniform_(self.query_pos_head.layers[1].weight) for layer in self.input_proj: xavier_uniform_(layer[0].weight)