# Ultralytics YOLO 🚀, AGPL-3.0 license import inspect import sys from pathlib import Path from typing import Union from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir from ultralytics.hub.utils import HUB_WEB_ROOT from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, LOGGER, RANK, callbacks, checks, emojis, yaml_load class Model(nn.Module): """ A base class to unify APIs for all models. Args: model (str, Path): Path to the model file to load or create. task (Any, optional): Task type for the YOLO model. Defaults to None. Attributes: predictor (Any): The predictor object. model (Any): The model object. trainer (Any): The trainer object. task (str): The type of model task. ckpt (Any): The checkpoint object if the model loaded from *.pt file. cfg (str): The model configuration if loaded from *.yaml file. ckpt_path (str): The checkpoint file path. overrides (dict): Overrides for the trainer object. metrics (Any): The data for metrics. Methods: __call__(source=None, stream=False, **kwargs): Alias for the predict method. _new(cfg:str, verbose:bool=True) -> None: Initializes a new model and infers the task type from the model definitions. _load(weights:str, task:str='') -> None: Initializes a new model and infers the task type from the model head. _check_is_pytorch_model() -> None: Raises TypeError if the model is not a PyTorch model. reset() -> None: Resets the model modules. info(verbose:bool=False) -> None: Logs the model info. fuse() -> None: Fuses the model for faster inference. predict(source=None, stream=False, **kwargs) -> List[ultralytics.engine.results.Results]: Performs prediction using the YOLO model. Returns: list(ultralytics.engine.results.Results): The prediction results. """ def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None: """ Initializes the YOLO model. Args: model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'. task (Any, optional): Task type for the YOLO model. Defaults to None. """ super().__init__() self.callbacks = callbacks.get_default_callbacks() self.predictor = None # reuse predictor self.model = None # model object self.trainer = None # trainer object self.ckpt = None # if loaded from *.pt self.cfg = None # if loaded from *.yaml self.ckpt_path = None self.overrides = {} # overrides for trainer object self.metrics = None # validation/training metrics self.session = None # HUB session self.task = task # task type model = str(model).strip() # strip spaces # Check if Ultralytics HUB model from https://hub.ultralytics.com if self.is_hub_model(model): from ultralytics.hub.session import HUBTrainingSession self.session = HUBTrainingSession(model) model = self.session.model_file # Check if Triton Server model elif self.is_triton_model(model): self.model = model self.task = task return # Load or create new YOLO model model = checks.check_model_file_from_stem(model) # add suffix, i.e. yolov8n -> yolov8n.pt if Path(model).suffix in ('.yaml', '.yml'): self._new(model, task) else: self._load(model, task) def __call__(self, source=None, stream=False, **kwargs): """Calls the predict() method with given arguments to perform object detection.""" return self.predict(source, stream, **kwargs) @staticmethod def is_triton_model(model): """Is model a Triton Server URL string, i.e. :////""" from urllib.parse import urlsplit url = urlsplit(model) return url.netloc and url.path and url.scheme in {'http', 'grpc'} @staticmethod def is_hub_model(model): """Check if the provided model is a HUB model.""" return any(( model.startswith(f'{HUB_WEB_ROOT}/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID [len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID def _new(self, cfg: str, task=None, model=None, verbose=True): """ Initializes a new model and infers the task type from the model definitions. Args: cfg (str): model configuration file task (str | None): model task model (BaseModel): Customized model. verbose (bool): display model info on load """ cfg_dict = yaml_model_load(cfg) self.cfg = cfg self.task = task or guess_model_task(cfg_dict) self.model = (model or self._smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model self.overrides['model'] = self.cfg self.overrides['task'] = self.task # Below added to allow export from YAMLs self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args) self.model.task = self.task def _load(self, weights: str, task=None): """ Initializes a new model and infers the task type from the model head. Args: weights (str): model checkpoint to be loaded task (str | None): model task """ suffix = Path(weights).suffix if suffix == '.pt': self.model, self.ckpt = attempt_load_one_weight(weights) self.task = self.model.args['task'] self.overrides = self.model.args = self._reset_ckpt_args(self.model.args) self.ckpt_path = self.model.pt_path else: weights = checks.check_file(weights) self.model, self.ckpt = weights, None self.task = task or guess_model_task(weights) self.ckpt_path = weights self.overrides['model'] = weights self.overrides['task'] = self.task def _check_is_pytorch_model(self): """Raises TypeError is model is not a PyTorch model.""" pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' pt_module = isinstance(self.model, nn.Module) if not (pt_module or pt_str): raise TypeError( f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. " f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported " f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, " f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device " f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'") def reset_weights(self): """Resets the model modules parameters to randomly initialized values, losing all training information.""" self._check_is_pytorch_model() for m in self.model.modules(): if hasattr(m, 'reset_parameters'): m.reset_parameters() for p in self.model.parameters(): p.requires_grad = True return self def load(self, weights='yolov8n.pt'): """Transfers parameters with matching names and shapes from 'weights' to model.""" self._check_is_pytorch_model() if isinstance(weights, (str, Path)): weights, self.ckpt = attempt_load_one_weight(weights) self.model.load(weights) return self def info(self, detailed=False, verbose=True): """ Logs model info. Args: detailed (bool): Show detailed information about model. verbose (bool): Controls verbosity. """ self._check_is_pytorch_model() return self.model.info(detailed=detailed, verbose=verbose) def fuse(self): """Fuse PyTorch Conv2d and BatchNorm2d layers.""" self._check_is_pytorch_model() self.model.fuse() def embed(self, source=None, stream=False, **kwargs): """ Calls the predict() method and returns image embeddings. Args: source (str | int | PIL | np.ndarray): The source of the image to make predictions on. Accepts all source types accepted by the YOLO model. stream (bool): Whether to stream the predictions or not. Defaults to False. **kwargs : Additional keyword arguments passed to the predictor. Check the 'configuration' section in the documentation for all available options. Returns: (List[torch.Tensor]): A list of image embeddings. """ if not kwargs.get('embed'): kwargs['embed'] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed return self.predict(source, stream, **kwargs) def predict(self, source=None, stream=False, predictor=None, **kwargs): """ Perform prediction using the YOLO model. Args: source (str | int | PIL | np.ndarray): The source of the image to make predictions on. Accepts all source types accepted by the YOLO model. stream (bool): Whether to stream the predictions or not. Defaults to False. predictor (BasePredictor): Customized predictor. **kwargs : Additional keyword arguments passed to the predictor. Check the 'configuration' section in the documentation for all available options. Returns: (List[ultralytics.engine.results.Results]): The prediction results. """ if source is None: source = ASSETS LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any( x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track')) custom = {'conf': 0.25, 'save': is_cli} # method defaults args = {**self.overrides, **custom, **kwargs, 'mode': 'predict'} # highest priority args on the right prompts = args.pop('prompts', None) # for SAM-type models if not self.predictor: self.predictor = (predictor or self._smart_load('predictor'))(overrides=args, _callbacks=self.callbacks) self.predictor.setup_model(model=self.model, verbose=is_cli) else: # only update args if predictor is already setup self.predictor.args = get_cfg(self.predictor.args, args) if 'project' in args or 'name' in args: self.predictor.save_dir = get_save_dir(self.predictor.args) if prompts and hasattr(self.predictor, 'set_prompts'): # for SAM-type models self.predictor.set_prompts(prompts) return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) def track(self, source=None, stream=False, persist=False, **kwargs): """ Perform object tracking on the input source using the registered trackers. Args: source (str, optional): The input source for object tracking. Can be a file path or a video stream. stream (bool, optional): Whether the input source is a video stream. Defaults to False. persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. **kwargs (optional): Additional keyword arguments for the tracking process. Returns: (List[ultralytics.engine.results.Results]): The tracking results. """ if not hasattr(self.predictor, 'trackers'): from ultralytics.trackers import register_tracker register_tracker(self, persist) kwargs['conf'] = kwargs.get('conf') or 0.1 # ByteTrack-based method needs low confidence predictions as input kwargs['mode'] = 'track' return self.predict(source=source, stream=stream, **kwargs) def val(self, validator=None, **kwargs): """ Validate a model on a given dataset. Args: validator (BaseValidator): Customized validator. **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs """ custom = {'rect': True} # method defaults args = {**self.overrides, **custom, **kwargs, 'mode': 'val'} # highest priority args on the right validator = (validator or self._smart_load('validator'))(args=args, _callbacks=self.callbacks) validator(model=self.model) self.metrics = validator.metrics return validator.metrics def benchmark(self, **kwargs): """ Benchmark a model on all export formats. Args: **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs """ self._check_is_pytorch_model() from ultralytics.utils.benchmarks import benchmark custom = {'verbose': False} # method defaults args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, 'mode': 'benchmark'} return benchmark( model=self, data=kwargs.get('data'), # if no 'data' argument passed set data=None for default datasets imgsz=args['imgsz'], half=args['half'], int8=args['int8'], device=args['device'], verbose=kwargs.get('verbose')) def export(self, **kwargs): """ Export model. Args: **kwargs : Any other args accepted by the Exporter. To see all args check 'configuration' section in docs. """ self._check_is_pytorch_model() from .exporter import Exporter custom = {'imgsz': self.model.args['imgsz'], 'batch': 1, 'data': None, 'verbose': False} # method defaults args = {**self.overrides, **custom, **kwargs, 'mode': 'export'} # highest priority args on the right return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) def train(self, trainer=None, **kwargs): """ Trains the model on a given dataset. Args: trainer (BaseTrainer, optional): Customized trainer. **kwargs (Any): Any number of arguments representing the training configuration. """ self._check_is_pytorch_model() if self.session: # Ultralytics HUB session if any(kwargs): LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.') kwargs = self.session.train_args checks.check_pip_update_available() overrides = yaml_load(checks.check_yaml(kwargs['cfg'])) if kwargs.get('cfg') else self.overrides custom = {'data': DEFAULT_CFG_DICT['data'] or TASK2DATA[self.task]} # method defaults args = {**overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right if args.get('resume'): args['resume'] = self.ckpt_path self.trainer = (trainer or self._smart_load('trainer'))(overrides=args, _callbacks=self.callbacks) if not args.get('resume'): # manually set model only if not resuming self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) self.model = self.trainer.model self.trainer.hub_session = self.session # attach optional HUB session self.trainer.train() # Update model and cfg after training if RANK in (-1, 0): ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last self.model, _ = attempt_load_one_weight(ckpt) self.overrides = self.model.args self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP return self.metrics def tune(self, use_ray=False, iterations=10, *args, **kwargs): """ Runs hyperparameter tuning, optionally using Ray Tune. See ultralytics.utils.tuner.run_ray_tune for Args. Returns: (dict): A dictionary containing the results of the hyperparameter search. """ self._check_is_pytorch_model() if use_ray: from ultralytics.utils.tuner import run_ray_tune return run_ray_tune(self, max_samples=iterations, *args, **kwargs) else: from .tuner import Tuner custom = {} # method defaults args = {**self.overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations) def _apply(self, fn): """Apply to(), cpu(), cuda(), half(), float() to model tensors that are not parameters or registered buffers.""" self._check_is_pytorch_model() self = super()._apply(fn) # noqa self.predictor = None # reset predictor as device may have changed self.overrides['device'] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0' return self @property def names(self): """Returns class names of the loaded model.""" return self.model.names if hasattr(self.model, 'names') else None @property def device(self): """Returns device if PyTorch model.""" return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None @property def transforms(self): """Returns transform of the loaded model.""" return self.model.transforms if hasattr(self.model, 'transforms') else None def add_callback(self, event: str, func): """Add a callback.""" self.callbacks[event].append(func) def clear_callback(self, event: str): """Clear all event callbacks.""" self.callbacks[event] = [] def reset_callbacks(self): """Reset all registered callbacks.""" for event in callbacks.default_callbacks.keys(): self.callbacks[event] = [callbacks.default_callbacks[event][0]] @staticmethod def _reset_ckpt_args(args): """Reset arguments when loading a PyTorch model.""" include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model return {k: v for k, v in args.items() if k in include} # def __getattr__(self, attr): # """Raises error if object has no requested attribute.""" # name = self.__class__.__name__ # raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") def _smart_load(self, key): """Load model/trainer/validator/predictor.""" try: return self.task_map[self.task][key] except Exception as e: name = self.__class__.__name__ mode = inspect.stack()[1][3] # get the function name. raise NotImplementedError( emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")) from e @property def task_map(self): """ Map head to model, trainer, validator, and predictor classes. Returns: task_map (dict): The map of model task to mode classes. """ raise NotImplementedError('Please provide task map for your model!')