--- comments: true description: Object Counting Using Ultralytics YOLOv8 keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK --- # Object Counting using Ultralytics YOLOv8 🚀 ## What is Object Counting? Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities. ## Advantages of Object Counting? - **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management. - **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection. - **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains. ## Real World Applications | Logistics | Aquaculture | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:| | ![Conveyor Belt Packets Counting Using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/70e2d106-510c-4c6c-a57a-d34a765aa757) | ![Fish Counting in Sea using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c60d047b-3837-435f-8d29-bb9fc95d2191) | | Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 | ## Example ```python from ultralytics import YOLO from ultralytics.solutions import object_counter import cv2 model = YOLO("yolov8n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") counter = object_counter.ObjectCounter() # Init Object Counter region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] counter.set_args(view_img=True, reg_pts=region_points, classes_names=model.model.names, draw_tracks=True) while cap.isOpened(): success, frame = cap.read() if not success: exit(0) tracks = model.track(frame, persist=True, show=False) counter.start_counting(frame, tracks) ``` ???+ tip "Region is Moveable" You can move the region anywhere in the frame by clicking on its edges ### Optional Arguments `set_args` | Name | Type | Default | Description | |-----------------|---------|--------------------------------------------------|---------------------------------------| | view_img | `bool` | `False` | Display the frame with counts | | line_thickness | `int` | `2` | Increase the thickness of count value | | reg_pts | `list` | `(20, 400), (1080, 404), (1080, 360), (20, 360)` | Region Area Points | | classes_names | `dict` | `model.model.names` | Classes Names Dict | | region_color | `tuple` | `(0, 255, 0)` | Region Area Color | | track_thickness | `int` | `2` | Tracking line thickness |