# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ops class NASPredictor(BasePredictor): """ Ultralytics YOLO NAS Predictor for object detection. This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and scaling the bounding boxes to fit the original image dimensions. Attributes: args (Namespace): Namespace containing various configurations for post-processing. Example: ```python from ultralytics import NAS model = NAS('yolo_nas_s') predictor = model.predictor # Assumes that raw_preds, img, orig_imgs are available results = predictor.postprocess(raw_preds, img, orig_imgs) ``` Note: Typically, this class is not instantiated directly. It is used internally within the `NAS` class. """ def postprocess(self, preds_in, img, orig_imgs): """Postprocess predictions and returns a list of Results objects.""" # Cat boxes and class scores boxes = ops.xyxy2xywh(preds_in[0][0]) preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) preds = ops.non_max_suppression( preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes, ) if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) img_path = self.batch[0][i] results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) return results