# Ultralytics YOLO 🚀, AGPL-3.0 license # Builds ultralytics/ultralytics:jetson image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics # Supports JetPack for YOLOv8 on Jetson Nano, TX1/TX2, Xavier NX, AGX Xavier, AGX Orin, and Orin NX # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-pytorch FROM nvcr.io/nvidia/l4t-pytorch:r35.2.1-pth2.0-py3 # Downloads to user config dir ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ # Install linux packages # g++ required to build 'tflite_support' package RUN apt update \ && apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg g++ # RUN alias python=python3 # Create working directory RUN mkdir -p /usr/src/ultralytics WORKDIR /usr/src/ultralytics # Copy contents # COPY . /usr/src/app (issues as not a .git directory) RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/ # Install pip packages manually for TensorRT compatibility https://github.com/NVIDIA/TensorRT/issues/2567 RUN python3 -m pip install --upgrade pip wheel RUN pip install --no-cache tqdm matplotlib pyyaml psutil thop pandas onnx "numpy==1.23" RUN pip install --no-cache -e . # Set environment variables ENV OMP_NUM_THREADS=1 # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/ultralytics:latest-jetson && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson -t $t . && sudo docker push $t # Pull and Run # t=ultralytics/ultralytics:jetson && sudo docker pull $t && sudo docker run -it --runtime=nvidia $t