--- comments: true description: Explore the diverse range of YOLO family, SAM, MobileSAM, FastSAM, YOLO-NAS, and RT-DETR models supported by Ultralytics. Get started with examples for both CLI and Python usage. keywords: Ultralytics, documentation, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, models, architectures, Python, CLI --- # Models Supported by Ultralytics Welcome to Ultralytics' model documentation! We offer support for a wide range of models, each tailored to specific tasks like [object detection](../tasks/detect.md), [instance segmentation](../tasks/segment.md), [image classification](../tasks/classify.md), [pose estimation](../tasks/pose.md), and [multi-object tracking](../modes/track.md). If you're interested in contributing your model architecture to Ultralytics, check out our [Contributing Guide](../help/contributing.md). ## Featured Models Here are some of the key models supported: 1. **[YOLOv3](yolov3.md)**: The third iteration of the YOLO model family, originally by Joseph Redmon, known for its efficient real-time object detection capabilities. 2. **[YOLOv4](yolov4.md)**: A darknet-native update to YOLOv3, released by Alexey Bochkovskiy in 2020. 3. **[YOLOv5](yolov5.md)**: An improved version of the YOLO architecture by Ultralytics, offering better performance and speed trade-offs compared to previous versions. 4. **[YOLOv6](yolov6.md)**: Released by [Meituan](https://about.meituan.com/) in 2022, and in use in many of the company's autonomous delivery robots. 5. **[YOLOv7](yolov7.md)**: Updated YOLO models released in 2022 by the authors of YOLOv4. 6. **[YOLOv8](yolov8.md)**: The latest version of the YOLO family, featuring enhanced capabilities such as instance segmentation, pose/keypoints estimation, and classification. 7. **[Segment Anything Model (SAM)](sam.md)**: Meta's Segment Anything Model (SAM). 8. **[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: MobileSAM for mobile applications, by Kyung Hee University. 9. **[Fast Segment Anything Model (FastSAM)](fast-sam.md)**: FastSAM by Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences. 10. **[YOLO-NAS](yolo-nas.md)**: YOLO Neural Architecture Search (NAS) Models. 11. **[Realtime Detection Transformers (RT-DETR)](rtdetr.md)**: Baidu's PaddlePaddle Realtime Detection Transformer (RT-DETR) models.
Watch: Run Ultralytics YOLO models in just a few lines of code.