--- description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch. keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch --- # BaseModel --- :::ultralytics.nn.tasks.BaseModel

# DetectionModel --- :::ultralytics.nn.tasks.DetectionModel

# SegmentationModel --- :::ultralytics.nn.tasks.SegmentationModel

# PoseModel --- :::ultralytics.nn.tasks.PoseModel

# ClassificationModel --- :::ultralytics.nn.tasks.ClassificationModel

# RTDETRDetectionModel --- :::ultralytics.nn.tasks.RTDETRDetectionModel

# Ensemble --- :::ultralytics.nn.tasks.Ensemble

# torch_safe_load --- :::ultralytics.nn.tasks.torch_safe_load

# attempt_load_weights --- :::ultralytics.nn.tasks.attempt_load_weights

# attempt_load_one_weight --- :::ultralytics.nn.tasks.attempt_load_one_weight

# parse_model --- :::ultralytics.nn.tasks.parse_model

# yaml_model_load --- :::ultralytics.nn.tasks.yaml_model_load

# guess_model_scale --- :::ultralytics.nn.tasks.guess_model_scale

# guess_model_task --- :::ultralytics.nn.tasks.guess_model_task