---
description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch.
keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch
---
# BaseModel
---
:::ultralytics.nn.tasks.BaseModel
# DetectionModel
---
:::ultralytics.nn.tasks.DetectionModel
# SegmentationModel
---
:::ultralytics.nn.tasks.SegmentationModel
# PoseModel
---
:::ultralytics.nn.tasks.PoseModel
# ClassificationModel
---
:::ultralytics.nn.tasks.ClassificationModel
# RTDETRDetectionModel
---
:::ultralytics.nn.tasks.RTDETRDetectionModel
# Ensemble
---
:::ultralytics.nn.tasks.Ensemble
# torch_safe_load
---
:::ultralytics.nn.tasks.torch_safe_load
# attempt_load_weights
---
:::ultralytics.nn.tasks.attempt_load_weights
# attempt_load_one_weight
---
:::ultralytics.nn.tasks.attempt_load_one_weight
# parse_model
---
:::ultralytics.nn.tasks.parse_model
# yaml_model_load
---
:::ultralytics.nn.tasks.yaml_model_load
# guess_model_scale
---
:::ultralytics.nn.tasks.guess_model_scale
# guess_model_task
---
:::ultralytics.nn.tasks.guess_model_task