# Ultralytics YOLO 🚀, AGPL-3.0 license from pathlib import Path import cv2 import numpy as np import torch from PIL import Image from torchvision.transforms import ToTensor from ultralytics import RTDETR, YOLO from ultralytics.data.build import load_inference_source from ultralytics.utils import LINUX, ONLINE, ROOT, SETTINGS MODEL = Path(SETTINGS['weights_dir']) / 'path with spaces' / 'yolov8n.pt' # test spaces in path CFG = 'yolov8n.yaml' SOURCE = ROOT / 'assets/bus.jpg' SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg') SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png') # Convert SOURCE to greyscale and 4-ch im = Image.open(SOURCE) im.convert('L').save(SOURCE_GREYSCALE) # greyscale im.convert('RGBA').save(SOURCE_RGBA) # 4-ch PNG with alpha def test_model_forward(): model = YOLO(CFG) model(SOURCE) def test_model_info(): model = YOLO(CFG) model.info() model = YOLO(MODEL) model.info(verbose=True) def test_model_fuse(): model = YOLO(CFG) model.fuse() model = YOLO(MODEL) model.fuse() def test_predict_dir(): model = YOLO(MODEL) model(source=ROOT / 'assets') def test_predict_img(): model = YOLO(MODEL) seg_model = YOLO('yolov8n-seg.pt') cls_model = YOLO('yolov8n-cls.pt') pose_model = YOLO('yolov8n-pose.pt') im = cv2.imread(str(SOURCE)) assert len(model(source=Image.open(SOURCE), save=True, verbose=True)) == 1 # PIL assert len(model(source=im, save=True, save_txt=True)) == 1 # ndarray assert len(model(source=[im, im], save=True, save_txt=True)) == 2 # batch assert len(list(model(source=[im, im], save=True, stream=True))) == 2 # stream assert len(model(torch.zeros(320, 640, 3).numpy())) == 1 # tensor to numpy batch = [ str(SOURCE), # filename Path(SOURCE), # Path 'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI cv2.imread(str(SOURCE)), # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, 3))] # numpy assert len(model(batch, visualize=True)) == len(batch) # multiple sources in a batch # Test tensor inference im = cv2.imread(str(SOURCE)) # OpenCV t = cv2.resize(im, (32, 32)) t = ToTensor()(t) t = torch.stack([t, t, t, t]) results = model(t, visualize=True) assert len(results) == t.shape[0] results = seg_model(t, visualize=True) assert len(results) == t.shape[0] results = cls_model(t, visualize=True) assert len(results) == t.shape[0] results = pose_model(t, visualize=True) assert len(results) == t.shape[0] def test_predict_grey_and_4ch(): model = YOLO(MODEL) for f in SOURCE_RGBA, SOURCE_GREYSCALE: for source in Image.open(f), cv2.imread(str(f)), f: model(source, save=True, verbose=True) def test_val(): model = YOLO(MODEL) model.val(data='coco8.yaml', imgsz=32) def test_val_scratch(): model = YOLO(CFG) model.val(data='coco8.yaml', imgsz=32) def test_amp(): if torch.cuda.is_available(): from ultralytics.utils.checks import check_amp model = YOLO(MODEL).model.cuda() assert check_amp(model) def test_train_scratch(): model = YOLO(CFG) model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk') # test disk caching model(SOURCE) def test_train_pretrained(): model = YOLO(MODEL) model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='ram') # test RAM caching model(SOURCE) def test_export_torchscript(): model = YOLO(MODEL) f = model.export(format='torchscript') YOLO(f)(SOURCE) # exported model inference def test_export_torchscript_scratch(): model = YOLO(CFG) f = model.export(format='torchscript') YOLO(f)(SOURCE) # exported model inference def test_export_onnx(): model = YOLO(MODEL) f = model.export(format='onnx') YOLO(f)(SOURCE) # exported model inference def test_export_openvino(): model = YOLO(MODEL) f = model.export(format='openvino') YOLO(f)(SOURCE) # exported model inference def test_export_coreml(): # sourcery skip: move-assign model = YOLO(MODEL) model.export(format='coreml') # if MACOS: # YOLO(f)(SOURCE) # model prediction only supported on macOS def test_export_tflite(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='tflite') YOLO(f)(SOURCE) def test_export_pb(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='pb') YOLO(f)(SOURCE) def test_export_paddle(enabled=False): # Paddle protobuf requirements conflicting with onnx protobuf requirements if enabled: model = YOLO(MODEL) model.export(format='paddle') def test_all_model_yamls(): for m in list((ROOT / 'models').rglob('yolo*.yaml')): if m.name == 'yolov8-rtdetr.yaml': # except the rtdetr model RTDETR(m.name) else: YOLO(m.name) def test_workflow(): model = YOLO(MODEL) model.train(data='coco8.yaml', epochs=1, imgsz=32) model.val() model.predict(SOURCE) model.export(format='onnx') # export a model to ONNX format def test_predict_callback_and_setup(): # test callback addition for prediction def on_predict_batch_end(predictor): # results -> List[batch_size] path, im0s, _, _ = predictor.batch # print('on_predict_batch_end', im0s[0].shape) im0s = im0s if isinstance(im0s, list) else [im0s] bs = [predictor.dataset.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) model = YOLO(MODEL) model.add_callback('on_predict_batch_end', on_predict_batch_end) dataset = load_inference_source(source=SOURCE) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True) # source already setup for _, (result, im0, bs) in enumerate(results): print('test_callback', im0.shape) print('test_callback', bs) boxes = result.boxes # Boxes object for bbox outputs print(boxes) def _test_results_api(res): # General apis except plot res = res.cpu().numpy() # res = res.cuda() res = res.to(device='cpu', dtype=torch.float32) res.save_txt('label.txt', save_conf=False) res.save_txt('label.txt', save_conf=True) res.save_crop('crops/') res.tojson(normalize=False) res.tojson(normalize=True) res.plot(pil=True) res.plot(conf=True, boxes=False) res.plot() print(res) print(res.path) for k in res.keys: print(getattr(res, k)) def test_results(): for m in ['yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt']: model = YOLO(m) res = model([SOURCE, SOURCE]) _test_results_api(res[0]) def test_track(): im = cv2.imread(str(SOURCE)) for m in ['yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt']: model = YOLO(m) res = model.track(source=im) _test_results_api(res[0])