# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.engine.results import Results from ultralytics.models.fastsam.utils import bbox_iou from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ops class FastSAMPredictor(DetectionPredictor): """ FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics YOLO framework. This class extends the DetectionPredictor, customizing the prediction pipeline specifically for fast SAM. It adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-class segmentation. Attributes: cfg (dict): Configuration parameters for prediction. overrides (dict, optional): Optional parameter overrides for custom behavior. _callbacks (dict, optional): Optional list of callback functions to be invoked during prediction. """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initializes the FastSAMPredictor class, inheriting from DetectionPredictor and setting the task to 'segment'. Args: cfg (dict): Configuration parameters for prediction. overrides (dict, optional): Optional parameter overrides for custom behavior. _callbacks (dict, optional): Optional list of callback functions to be invoked during prediction. """ super().__init__(cfg, overrides, _callbacks) self.args.task = 'segment' def postprocess(self, preds, img, orig_imgs): """ Perform post-processing steps on predictions, including non-max suppression and scaling boxes to original image size, and returns the final results. Args: preds (list): The raw output predictions from the model. img (torch.Tensor): The processed image tensor. orig_imgs (list | torch.Tensor): The original image or list of images. Returns: (list): A list of Results objects, each containing processed boxes, masks, and other metadata. """ p = ops.non_max_suppression( preds[0], self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nc=1, # set to 1 class since SAM has no class predictions classes=self.args.classes) full_box = torch.zeros(p[0].shape[1], device=p[0].device) full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0 full_box = full_box.view(1, -1) critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:]) if critical_iou_index.numel() != 0: full_box[0][4] = p[0][critical_iou_index][:, 4] full_box[0][6:] = p[0][critical_iou_index][:, 6:] p[0][critical_iou_index] = full_box if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported for i, pred in enumerate(p): orig_img = orig_imgs[i] img_path = self.batch[0][i] if not len(pred): # save empty boxes masks = None elif self.args.retina_masks: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) return results