--- comments: true description: Узнайте о ключевых задачах компьютерного зрения, которые может выполнять YOLOv8, включая обнаружение, сегментацию, классификацию и оценку позы. Поймите, как они могут быть использованы в ваших AI проектах. keywords: Ultralytics, YOLOv8, Обнаружение, Сегментация, Классификация, Оценка Позы, AI Фреймворк, Задачи Компьютерного Зрения --- # Задачи Ultralytics YOLOv8
Поддерживаемые задачи Ultralytics YOLO YOLOv8 — это AI фреймворк, поддерживающий множество задач компьютерного зрения **задачи**. Фреймворк может быть использован для выполнения [обнаружения](detect.md), [сегментации](segment.md), [классификации](classify.md) и оценки [позы](pose.md). Каждая из этих задач имеет различные цели и области применения. !!! Note "Заметка" 🚧 Наша многоязычная документация в настоящее время находится в стадии разработки, и мы усердно работаем над ее улучшением. Спасибо за ваше терпение! 🙏



Смотрите: Изучите задачи Ultralytics YOLO: Обнаружение объектов, Сегментация, Отслеживание и Оценка позы.

## [Обнаружение](detect.md) Обнаружение — это основная задача, поддерживаемая YOLOv8. Она заключается в обнаружении объектов на изображении или кадре видео и рисовании вокруг них ограничивающих рамок. Обнаруженные объекты классифицируются на разные категории на основе их характеристик. YOLOv8 может обнаруживать несколько объектов на одном изображении или видеокадре с высокой точностью и скоростью. [Примеры Обнаружения](detect.md){ .md-button } ## [Сегментация](segment.md) Сегментация — это задача, которая включает разбиение изображения на разные регионы на основе содержимого изображения. Каждому региону присваивается метка на основе его содержимого. Эта задача полезна в таких приложениях, как сегментация изображений и медицинская визуализация. YOLOv8 использует вариацию архитектуры U-Net для выполнения сегментации. [Примеры Сегментации](segment.md){ .md-button } ## [Классификация](classify.md) Классификация — это задача, включающая классификацию изображения на разные категории. YOLOv8 может быть использован для классификации изображений на основе их содержимого. Для выполнения классификации используется вариация архитектуры EfficientNet. [Примеры Классификации](classify.md){ .md-button } ## [Поза](pose.md) Обнаружение точек позы или ключевых точек — это задача, которая включает обнаружение конкретных точек на изображении или видеокадре. Эти точки называются ключевыми и используются для отслеживания движения или оценки позы. YOLOv8 может обнаруживать ключевые точки на изображении или видеокадре с высокой точностью и скоростью. [Примеры Поз](pose.md){ .md-button } ## Заключение YOLOv8 поддерживает множество задач, включая обнаружение, сегментацию, классификацию и обнаружение ключевых точек. Каждая из этих задач имеет разные цели и области применения. Понимая различия между этими задачами, вы можете выбрать подходящую задачу для вашего приложения компьютерного зрения.