# Ultralytics YOLO 🚀, GPL-3.0 license from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: import clearml from clearml import Task assert clearml.__version__ # verify package is not directory except (ImportError, AssertionError): clearml = None def _log_images(imgs_dict, group='', step=0): task = Task.current_task() if task: for k, v in imgs_dict.items(): task.get_logger().report_image(group, k, step, v) def on_pretrain_routine_start(trainer): # TODO: reuse existing task task = Task.init(project_name=trainer.args.project or 'YOLOv8', task_name=trainer.args.name, tags=['YOLOv8'], output_uri=True, reuse_last_task_id=False, auto_connect_frameworks={'pytorch': False}) task.connect(vars(trainer.args), name='General') def on_train_epoch_end(trainer): if trainer.epoch == 1: _log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic', trainer.epoch) def on_fit_epoch_end(trainer): if trainer.epoch == 0: model_info = { 'Parameters': get_num_params(trainer.model), 'GFLOPs': round(get_flops(trainer.model), 3), 'Inference speed (ms/img)': round(trainer.validator.speed[1], 3)} Task.current_task().connect(model_info, name='Model') def on_train_end(trainer): Task.current_task().update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if clearml else {}