# Ultralytics YOLO 🚀, GPL-3.0 license from ultralytics.yolo.data import build_classification_dataloader from ultralytics.yolo.engine.validator import BaseValidator from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER from ultralytics.yolo.utils.metrics import ClassifyMetrics class ClassificationValidator(BaseValidator): def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): super().__init__(dataloader, save_dir, pbar, args, _callbacks) self.args.task = 'classify' self.metrics = ClassifyMetrics() def get_desc(self): return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc') def init_metrics(self, model): self.pred = [] self.targets = [] def preprocess(self, batch): batch['img'] = batch['img'].to(self.device, non_blocking=True) batch['img'] = batch['img'].half() if self.args.half else batch['img'].float() batch['cls'] = batch['cls'].to(self.device) return batch def update_metrics(self, preds, batch): n5 = min(len(self.model.names), 5) self.pred.append(preds.argsort(1, descending=True)[:, :n5]) self.targets.append(batch['cls']) def finalize_metrics(self, *args, **kwargs): self.metrics.speed = self.speed # self.metrics.confusion_matrix = self.confusion_matrix # TODO: classification ConfusionMatrix def get_stats(self): self.metrics.process(self.targets, self.pred) return self.metrics.results_dict def get_dataloader(self, dataset_path, batch_size): return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size, augment=False, shuffle=False, workers=self.args.workers) def print_results(self): pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5)) def val(cfg=DEFAULT_CFG, use_python=False): model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" data = cfg.data or 'mnist160' args = dict(model=model, data=data) if use_python: from ultralytics import YOLO YOLO(model).val(**args) else: validator = ClassificationValidator(args=args) validator(model=args['model']) if __name__ == '__main__': val()