# Ultralytics YOLO 🚀, AGPL-3.0 license site_name: Ultralytics YOLOv8 Docs site_url: https://docs.ultralytics.com repo_url: https://github.com/ultralytics/ultralytics edit_uri: https://github.com/ultralytics/ultralytics/tree/main/docs repo_name: ultralytics/ultralytics remote_name: https://github.com/ultralytics/docs theme: name: "material" logo: https://github.com/ultralytics/assets/raw/main/logo/Ultralytics_Logotype_Reverse.svg favicon: assets/favicon.ico font: text: Roboto code: Roboto Mono palette: # Palette toggle for light mode - scheme: default # primary: grey toggle: icon: material/brightness-7 name: Switch to dark mode # Palette toggle for dark mode - scheme: slate # primary: black toggle: icon: material/brightness-4 name: Switch to light mode features: - content.action.edit - content.code.annotate - content.code.copy - content.tooltips - search.highlight - search.share - search.suggest - toc.follow - toc.integrate - navigation.top - navigation.tabs - navigation.tabs.sticky - navigation.expand - navigation.footer - navigation.tracking - navigation.instant - navigation.indexes - content.tabs.link # all code tabs change simultaneously # Customization copyright: Ultralytics 2023. All rights reserved. extra: # version: # provider: mike # version drop-down menu analytics: provider: google property: G-2M5EHKC0BH feedback: title: Was this page helpful? ratings: - icon: material/heart name: This page was helpful data: 1 note: Thanks for your feedback! - icon: material/heart-broken name: This page could be improved data: 0 note: >- Thanks for your feedback!
Tell us what we can improve. social: - icon: fontawesome/brands/github link: https://github.com/ultralytics - icon: fontawesome/brands/linkedin link: https://www.linkedin.com/company/ultralytics/ - icon: fontawesome/brands/twitter link: https://twitter.com/ultralytics - icon: fontawesome/brands/youtube link: https://www.youtube.com/ultralytics - icon: fontawesome/brands/docker link: https://hub.docker.com/r/ultralytics/ultralytics/ - icon: fontawesome/brands/python link: https://pypi.org/project/ultralytics/ extra_css: - stylesheets/style.css extra_files: - robots.txt markdown_extensions: # Div text decorators - admonition - md_in_html - pymdownx.details - pymdownx.superfences - tables - attr_list - def_list # Syntax highlight - pymdownx.highlight: anchor_linenums: true - pymdownx.inlinehilite - pymdownx.snippets - pymdownx.emoji: emoji_index: !!python/name:materialx.emoji.twemoji # noqa emoji_generator: !!python/name:materialx.emoji.to_svg # Content tabs - pymdownx.tabbed: alternate_style: true # Highlight - pymdownx.critic - pymdownx.caret - pymdownx.keys - pymdownx.mark - pymdownx.tilde plugins: - mkdocstrings - search # Primary navigation nav: - Home: - index.md - Quickstart: quickstart.md - Modes: - modes/index.md - Train: modes/train.md - Val: modes/val.md - Predict: modes/predict.md - Export: modes/export.md - Track: modes/track.md - Benchmark: modes/benchmark.md - Tasks: - tasks/index.md - Detect: tasks/detect.md - Segment: tasks/segment.md - Classify: tasks/classify.md - Pose: tasks/pose.md - Usage: - CLI: usage/cli.md - Python: usage/python.md - Callbacks: usage/callbacks.md - Configuration: usage/cfg.md - Advanced Customization: usage/engine.md - Ultralytics HUB: hub.md - iOS and Android App: app.md - Reference: - hub: - auth: reference/hub/auth.md - session: reference/hub/session.md - utils: reference/hub/utils.md - nn: - autobackend: reference/nn/autobackend.md - autoshape: reference/nn/autoshape.md - modules: reference/nn/modules.md - tasks: reference/nn/tasks.md - tracker: - track: reference/tracker/track.md - trackers: - basetrack: reference/tracker/trackers/basetrack.md - bot_sort: reference/tracker/trackers/bot_sort.md - byte_tracker: reference/tracker/trackers/byte_tracker.md - utils: - gmc: reference/tracker/utils/gmc.md - kalman_filter: reference/tracker/utils/kalman_filter.md - matching: reference/tracker/utils/matching.md - yolo: - data: - augment: reference/yolo/data/augment.md - base: reference/yolo/data/base.md - build: reference/yolo/data/build.md - dataloaders: - stream_loaders: reference/yolo/data/dataloaders/stream_loaders.md - v5augmentations: reference/yolo/data/dataloaders/v5augmentations.md - v5loader: reference/yolo/data/dataloaders/v5loader.md - dataset: reference/yolo/data/dataset.md - dataset_wrappers: reference/yolo/data/dataset_wrappers.md - utils: reference/yolo/data/utils.md - engine: - exporter: reference/yolo/engine/exporter.md - model: reference/yolo/engine/model.md - predictor: reference/yolo/engine/predictor.md - results: reference/yolo/engine/results.md - trainer: reference/yolo/engine/trainer.md - validator: reference/yolo/engine/validator.md - utils: - autobatch: reference/yolo/utils/autobatch.md - benchmarks: reference/yolo/utils/benchmarks.md - callbacks: - base: reference/yolo/utils/callbacks/base.md - clearml: reference/yolo/utils/callbacks/clearml.md - comet: reference/yolo/utils/callbacks/comet.md - hub: reference/yolo/utils/callbacks/hub.md - mlflow: reference/yolo/utils/callbacks/mlflow.md - raytune: reference/yolo/utils/callbacks/raytune.md - tensorboard: reference/yolo/utils/callbacks/tensorboard.md - wb: reference/yolo/utils/callbacks/wb.md - checks: reference/yolo/utils/checks.md - dist: reference/yolo/utils/dist.md - downloads: reference/yolo/utils/downloads.md - errors: reference/yolo/utils/errors.md - files: reference/yolo/utils/files.md - instance: reference/yolo/utils/instance.md - loss: reference/yolo/utils/loss.md - metrics: reference/yolo/utils/metrics.md - ops: reference/yolo/utils/ops.md - plotting: reference/yolo/utils/plotting.md - tal: reference/yolo/utils/tal.md - torch_utils: reference/yolo/utils/torch_utils.md - v8: - classify: - predict: reference/yolo/v8/classify/predict.md - train: reference/yolo/v8/classify/train.md - val: reference/yolo/v8/classify/val.md - detect: - predict: reference/yolo/v8/detect/predict.md - train: reference/yolo/v8/detect/train.md - val: reference/yolo/v8/detect/val.md - pose: - predict: reference/yolo/v8/pose/predict.md - train: reference/yolo/v8/pose/train.md - val: reference/yolo/v8/pose/val.md - segment: - predict: reference/yolo/v8/segment/predict.md - train: reference/yolo/v8/segment/train.md - val: reference/yolo/v8/segment/val.md - YOLOv5: - yolov5/index.md - Quickstart: yolov5/quickstart_tutorial.md - Environments: - Amazon Web Services (AWS): yolov5/environments/aws_quickstart_tutorial.md - Google Cloud (GCP): yolov5/environments/google_cloud_quickstart_tutorial.md - Docker Image: yolov5/environments/docker_image_quickstart_tutorial.md - Tutorials: - Train Custom Data: yolov5/tutorials/train_custom_data.md - Tips for Best Training Results: yolov5/tutorials/tips_for_best_training_results.md - Multi-GPU Training: yolov5/tutorials/multi_gpu_training.md - PyTorch Hub: yolov5/tutorials/pytorch_hub_model_loading.md - TFLite, ONNX, CoreML, TensorRT Export: yolov5/tutorials/model_export.md - NVIDIA Jetson Nano Deployment: yolov5/tutorials/running_on_jetson_nano.md - Test-Time Augmentation (TTA): yolov5/tutorials/test_time_augmentation.md - Model Ensembling: yolov5/tutorials/model_ensembling.md - Pruning/Sparsity Tutorial: yolov5/tutorials/model_pruning_and_sparsity.md - Hyperparameter evolution: yolov5/tutorials/hyperparameter_evolution.md - Transfer learning with frozen layers: yolov5/tutorials/transfer_learning_with_frozen_layers.md - Architecture Summary: yolov5/tutorials/architecture_description.md - Roboflow Datasets: yolov5/tutorials/roboflow_datasets_integration.md - Neural Magic's DeepSparse: yolov5/tutorials/neural_magic_pruning_quantization.md - Comet Logging: yolov5/tutorials/comet_logging_integration.md - Clearml Logging: yolov5/tutorials/clearml_logging_integration.md - Security: SECURITY.md