# Ultralytics YOLO 🚀, GPL-3.0 license import hydra import torch from ultralytics.yolo.engine.predictor import BasePredictor from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT from ultralytics.yolo.utils.checks import check_imgsz from ultralytics.yolo.utils.plotting import Annotator class ClassificationPredictor(BasePredictor): def get_annotator(self, img): return Annotator(img, example=str(self.model.names), pil=True) def preprocess(self, img): img = torch.Tensor(img).to(self.model.device) img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 return img def write_results(self, idx, preds, batch): p, im, im0 = batch log_string = "" if len(im.shape) == 3: im = im[None] # expand for batch dim self.seen += 1 im0 = im0.copy() if self.webcam: # batch_size >= 1 log_string += f'{idx}: ' frame = self.dataset.cound else: frame = getattr(self.dataset, 'frame', 0) self.data_path = p # save_path = str(self.save_dir / p.name) # im.jpg self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') log_string += '%gx%g ' % im.shape[2:] # print string self.annotator = self.get_annotator(im0) prob = preds[idx].softmax(0) if self.return_outputs: self.output["prob"] = prob.cpu().numpy() # Print results top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, " # write text = '\n'.join(f'{prob[j]:.2f} {self.model.names[j]}' for j in top5i) if self.args.save or self.args.show: # Add bbox to image self.annotator.text((32, 32), text, txt_color=(255, 255, 255)) if self.args.save_txt: # Write to file with open(f'{self.txt_path}.txt', 'a') as f: f.write(text + '\n') return log_string @hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) def predict(cfg): cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18" cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" predictor = ClassificationPredictor(cfg) predictor.predict_cli() if __name__ == "__main__": predict()