Update `pyproject.toml` and Docs (#7274)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Yaofu <voipman@sina.cn>
Co-authored-by: Umit Kacar, PhD <kacarumit.phd@gmail.com>
main
Glenn Jocher 1 year ago committed by GitHub
parent e687c09423
commit f702b34a50
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      .pre-commit-config.yaml
  2. 6
      docs/en/integrations/index.md
  3. 6
      docs/en/reference/data/augment.md
  4. 5
      docs/mkdocs.yml
  5. 9
      pyproject.toml
  6. 5
      ultralytics/data/augment.py

@ -32,7 +32,7 @@ repos:
name: Upgrade code
- repo: https://github.com/PyCQA/isort
rev: 5.12.0
rev: 5.13.2
hooks:
- id: isort
name: Sort imports

@ -30,13 +30,15 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
- [Ray Tune](ray-tune.md): Optimize the hyperparameters of your Ultralytics models at any scale.
- [TensorBoard](https://tensorboard.dev/): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration.
- [TensorBoard](tensorboard.md): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration.
- [Weights & Biases (W&B)](weights-biases.md): Monitor experiments, visualize metrics, and foster reproducibility and collaboration on Ultralytics projects.
- [Amazon SageMaker](amazon-sagemaker.md): Leverage Amazon SageMaker to efficiently build, train, and deploy Ultralytics models, providing an all-in-one platform for the ML lifecycle.
## Deployment Integrations
- [Neural Magic](https://neuralmagic.com/): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
- [Neural Magic](neural-magic.md): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
- [OpenVino](openvino.md): OpenVINO is Intel's toolkit for optimizing and deploying computer vision models efficiently across various Intel hardware platforms.

@ -79,10 +79,6 @@ keywords: Ultralytics, Data Augmentation, BaseTransform, MixUp, RandomHSV, Lette
<br><br>
## ::: ultralytics.data.augment.hsv2colorjitter
<br><br>
## ::: ultralytics.data.augment.classify_albumentations
## ::: ultralytics.data.augment.classify_augmentations
<br><br>

@ -289,6 +289,9 @@ nav:
- ClearML: integrations/clearml.md
- DVC: integrations/dvc.md
- Weights & Biases: integrations/weights-biases.md
- Neural Magic: integrations/neural-magic.md
- TensorBoard: integrations/tensorboard.md
- Amazon SageMaker: integrations/amazon-sagemaker.md
- Usage:
- CLI: usage/cli.md
- Python: usage/python.md
@ -416,8 +419,8 @@ nav:
- tasks: reference/nn/tasks.md
- solutions:
- ai_gym: reference/solutions/ai_gym.md
- object_counter: reference/solutions/object_counter.md
- heatmap: reference/solutions/heatmap.md
- object_counter: reference/solutions/object_counter.md
- trackers:
- basetrack: reference/trackers/basetrack.md
- bot_sort: reference/trackers/bot_sort.md

@ -1,5 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
#
# Overview:
# This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library.
# It defines essential project metadata, dependencies, and settings used to develop and deploy the library.
@ -159,6 +159,9 @@ space_between_ending_comma_and_closing_bracket = true
split_before_closing_bracket = false
split_before_first_argument = false
[tool.ruff]
line-length = 120
[tool.docformatter]
wrap-summaries = 120
wrap-descriptions = 120
@ -167,5 +170,5 @@ pre-summary-newline = true
close-quotes-on-newline = true
[tool.codespell]
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn"
skip = '*.csv,*venv*,docs/de,docs/fr,docs/pt,docs/es,docs/mkdocs_de.yml'
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn,commend"
skip = '*.csv,*venv*,docs/??/,docs/mkdocs_??.yml'

@ -1005,7 +1005,7 @@ def classify_transforms(
crop_fraction (float): fraction of image to crop. default is 1.0.
Returns:
T.Compose: torchvision transforms
(T.Compose): torchvision transforms
"""
if isinstance(size, (tuple, list)):
@ -1064,13 +1064,12 @@ def classify_augmentations(
hsv_h (float): image HSV-Hue augmentation (fraction)
hsv_s (float): image HSV-Saturation augmentation (fraction)
hsv_v (float): image HSV-Value augmentation (fraction)
contrast (float): image contrast augmentation (fraction)
force_color_jitter (bool): force to apply color jitter even if auto augment is enabled
erasing (float): probability of random erasing
interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR.
Returns:
T.Compose: torchvision transforms
(T.Compose): torchvision transforms
"""
# Transforms to apply if albumentations not installed
if not isinstance(size, int):

Loading…
Cancel
Save