|
|
|
@ -2,11 +2,19 @@ |
|
|
|
|
""" |
|
|
|
|
Model validation metrics |
|
|
|
|
""" |
|
|
|
|
import math |
|
|
|
|
import warnings |
|
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
import numpy as np |
|
|
|
|
import torch |
|
|
|
|
import torch.nn as nn |
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import TryExcept |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# boxes |
|
|
|
|
def box_area(box): |
|
|
|
|
# box = xyxy(4,n) |
|
|
|
|
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
|
@ -53,3 +61,484 @@ def box_iou(box1, box2, eps=1e-7): |
|
|
|
|
|
|
|
|
|
# IoU = inter / (area1 + area2 - inter) |
|
|
|
|
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): |
|
|
|
|
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) |
|
|
|
|
|
|
|
|
|
# Get the coordinates of bounding boxes |
|
|
|
|
if xywh: # transform from xywh to xyxy |
|
|
|
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1) |
|
|
|
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 |
|
|
|
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ |
|
|
|
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ |
|
|
|
|
else: # x1, y1, x2, y2 = box1 |
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1) |
|
|
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1) |
|
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|
|
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|
|
|
|
|
|
|
|
|
# Intersection area |
|
|
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|
|
|
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) |
|
|
|
|
|
|
|
|
|
# Union Area |
|
|
|
|
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
|
|
|
|
|
|
|
# IoU |
|
|
|
|
iou = inter / union |
|
|
|
|
if CIoU or DIoU or GIoU: |
|
|
|
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width |
|
|
|
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height |
|
|
|
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 |
|
|
|
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared |
|
|
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 |
|
|
|
|
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 |
|
|
|
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|
|
|
|
with torch.no_grad(): |
|
|
|
|
alpha = v / (v - iou + (1 + eps)) |
|
|
|
|
return iou - (rho2 / c2 + v * alpha) # CIoU |
|
|
|
|
return iou - rho2 / c2 # DIoU |
|
|
|
|
c_area = cw * ch + eps # convex area |
|
|
|
|
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf |
|
|
|
|
return iou # IoU |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mask_iou(mask1, mask2, eps=1e-7): |
|
|
|
|
""" |
|
|
|
|
mask1: [N, n] m1 means number of predicted objects |
|
|
|
|
mask2: [M, n] m2 means number of gt objects |
|
|
|
|
Note: n means image_w x image_h |
|
|
|
|
return: masks iou, [N, M] |
|
|
|
|
""" |
|
|
|
|
intersection = torch.matmul(mask1, mask2.t()).clamp(0) |
|
|
|
|
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection |
|
|
|
|
return intersection / (union + eps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def masks_iou(mask1, mask2, eps=1e-7): |
|
|
|
|
""" |
|
|
|
|
mask1: [N, n] m1 means number of predicted objects |
|
|
|
|
mask2: [N, n] m2 means number of gt objects |
|
|
|
|
Note: n means image_w x image_h |
|
|
|
|
return: masks iou, (N, ) |
|
|
|
|
""" |
|
|
|
|
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, ) |
|
|
|
|
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection |
|
|
|
|
return intersection / (union + eps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 |
|
|
|
|
# return positive, negative label smoothing BCE targets |
|
|
|
|
return 1.0 - 0.5 * eps, 0.5 * eps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# losses |
|
|
|
|
class FocalLoss(nn.Module): |
|
|
|
|
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) |
|
|
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): |
|
|
|
|
super().__init__() |
|
|
|
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() |
|
|
|
|
self.gamma = gamma |
|
|
|
|
self.alpha = alpha |
|
|
|
|
self.reduction = loss_fcn.reduction |
|
|
|
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element |
|
|
|
|
|
|
|
|
|
def forward(self, pred, true): |
|
|
|
|
loss = self.loss_fcn(pred, true) |
|
|
|
|
# p_t = torch.exp(-loss) |
|
|
|
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability |
|
|
|
|
|
|
|
|
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py |
|
|
|
|
pred_prob = torch.sigmoid(pred) # prob from logits |
|
|
|
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob) |
|
|
|
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) |
|
|
|
|
modulating_factor = (1.0 - p_t) ** self.gamma |
|
|
|
|
loss *= alpha_factor * modulating_factor |
|
|
|
|
|
|
|
|
|
if self.reduction == 'mean': |
|
|
|
|
return loss.mean() |
|
|
|
|
elif self.reduction == 'sum': |
|
|
|
|
return loss.sum() |
|
|
|
|
else: # 'none' |
|
|
|
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConfusionMatrix: |
|
|
|
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix |
|
|
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45): |
|
|
|
|
self.matrix = np.zeros((nc + 1, nc + 1)) |
|
|
|
|
self.nc = nc # number of classes |
|
|
|
|
self.conf = conf |
|
|
|
|
self.iou_thres = iou_thres |
|
|
|
|
|
|
|
|
|
def process_batch(self, detections, labels): |
|
|
|
|
""" |
|
|
|
|
Return intersection-over-union (Jaccard index) of boxes. |
|
|
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
|
|
|
Arguments: |
|
|
|
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class |
|
|
|
|
labels (Array[M, 5]), class, x1, y1, x2, y2 |
|
|
|
|
Returns: |
|
|
|
|
None, updates confusion matrix accordingly |
|
|
|
|
""" |
|
|
|
|
if detections is None: |
|
|
|
|
gt_classes = labels.int() |
|
|
|
|
for gc in gt_classes: |
|
|
|
|
self.matrix[self.nc, gc] += 1 # background FN |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
detections = detections[detections[:, 4] > self.conf] |
|
|
|
|
gt_classes = labels[:, 0].int() |
|
|
|
|
detection_classes = detections[:, 5].int() |
|
|
|
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
|
|
|
|
|
|
|
x = torch.where(iou > self.iou_thres) |
|
|
|
|
if x[0].shape[0]: |
|
|
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() |
|
|
|
|
if x[0].shape[0] > 1: |
|
|
|
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
|
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
|
|
|
else: |
|
|
|
|
matches = np.zeros((0, 3)) |
|
|
|
|
|
|
|
|
|
n = matches.shape[0] > 0 |
|
|
|
|
m0, m1, _ = matches.transpose().astype(int) |
|
|
|
|
for i, gc in enumerate(gt_classes): |
|
|
|
|
j = m0 == i |
|
|
|
|
if n and sum(j) == 1: |
|
|
|
|
self.matrix[detection_classes[m1[j]], gc] += 1 # correct |
|
|
|
|
else: |
|
|
|
|
self.matrix[self.nc, gc] += 1 # true background |
|
|
|
|
|
|
|
|
|
if n: |
|
|
|
|
for i, dc in enumerate(detection_classes): |
|
|
|
|
if not any(m1 == i): |
|
|
|
|
self.matrix[dc, self.nc] += 1 # predicted background |
|
|
|
|
|
|
|
|
|
def matrix(self): |
|
|
|
|
return self.matrix |
|
|
|
|
|
|
|
|
|
def tp_fp(self): |
|
|
|
|
tp = self.matrix.diagonal() # true positives |
|
|
|
|
fp = self.matrix.sum(1) - tp # false positives |
|
|
|
|
# fn = self.matrix.sum(0) - tp # false negatives (missed detections) |
|
|
|
|
return tp[:-1], fp[:-1] # remove background class |
|
|
|
|
|
|
|
|
|
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure') |
|
|
|
|
def plot(self, normalize=True, save_dir='', names=()): |
|
|
|
|
import seaborn as sn |
|
|
|
|
|
|
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns |
|
|
|
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) |
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) |
|
|
|
|
nc, nn = self.nc, len(names) # number of classes, names |
|
|
|
|
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size |
|
|
|
|
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels |
|
|
|
|
ticklabels = (names + ['background']) if labels else "auto" |
|
|
|
|
with warnings.catch_warnings(): |
|
|
|
|
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered |
|
|
|
|
sn.heatmap(array, |
|
|
|
|
ax=ax, |
|
|
|
|
annot=nc < 30, |
|
|
|
|
annot_kws={ |
|
|
|
|
"size": 8}, |
|
|
|
|
cmap='Blues', |
|
|
|
|
fmt='.2f', |
|
|
|
|
square=True, |
|
|
|
|
vmin=0.0, |
|
|
|
|
xticklabels=ticklabels, |
|
|
|
|
yticklabels=ticklabels).set_facecolor((1, 1, 1)) |
|
|
|
|
ax.set_ylabel('True') |
|
|
|
|
ax.set_ylabel('Predicted') |
|
|
|
|
ax.set_title('Confusion Matrix') |
|
|
|
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) |
|
|
|
|
plt.close(fig) |
|
|
|
|
|
|
|
|
|
def print(self): |
|
|
|
|
for i in range(self.nc + 1): |
|
|
|
|
print(' '.join(map(str, self.matrix[i]))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fitness_detection(x): |
|
|
|
|
# Model fitness as a weighted combination of metrics |
|
|
|
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] |
|
|
|
|
return (x[:, :4] * w).sum(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fitness_segmentation(x): |
|
|
|
|
# Model fitness as a weighted combination of metrics |
|
|
|
|
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9] |
|
|
|
|
return (x[:, :8] * w).sum(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def smooth(y, f=0.05): |
|
|
|
|
# Box filter of fraction f |
|
|
|
|
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) |
|
|
|
|
p = np.ones(nf // 2) # ones padding |
|
|
|
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded |
|
|
|
|
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_ap(recall, precision): |
|
|
|
|
""" Compute the average precision, given the recall and precision curves |
|
|
|
|
# Arguments |
|
|
|
|
recall: The recall curve (list) |
|
|
|
|
precision: The precision curve (list) |
|
|
|
|
# Returns |
|
|
|
|
Average precision, precision curve, recall curve |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
# Append sentinel values to beginning and end |
|
|
|
|
mrec = np.concatenate(([0.0], recall, [1.0])) |
|
|
|
|
mpre = np.concatenate(([1.0], precision, [0.0])) |
|
|
|
|
|
|
|
|
|
# Compute the precision envelope |
|
|
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) |
|
|
|
|
|
|
|
|
|
# Integrate area under curve |
|
|
|
|
method = 'interp' # methods: 'continuous', 'interp' |
|
|
|
|
if method == 'interp': |
|
|
|
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO) |
|
|
|
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate |
|
|
|
|
else: # 'continuous' |
|
|
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes |
|
|
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve |
|
|
|
|
|
|
|
|
|
return ap, mpre, mrec |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""): |
|
|
|
|
""" Compute the average precision, given the recall and precision curves. |
|
|
|
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. |
|
|
|
|
# Arguments |
|
|
|
|
tp: True positives (nparray, nx1 or nx10). |
|
|
|
|
conf: Objectness value from 0-1 (nparray). |
|
|
|
|
pred_cls: Predicted object classes (nparray). |
|
|
|
|
target_cls: True object classes (nparray). |
|
|
|
|
plot: Plot precision-recall curve at mAP@0.5 |
|
|
|
|
save_dir: Plot save directory |
|
|
|
|
# Returns |
|
|
|
|
The average precision as computed in py-faster-rcnn. |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
# Sort by objectness |
|
|
|
|
i = np.argsort(-conf) |
|
|
|
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] |
|
|
|
|
|
|
|
|
|
# Find unique classes |
|
|
|
|
unique_classes, nt = np.unique(target_cls, return_counts=True) |
|
|
|
|
nc = unique_classes.shape[0] # number of classes, number of detections |
|
|
|
|
|
|
|
|
|
# Create Precision-Recall curve and compute AP for each class |
|
|
|
|
px, py = np.linspace(0, 1, 1000), [] # for plotting |
|
|
|
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) |
|
|
|
|
for ci, c in enumerate(unique_classes): |
|
|
|
|
i = pred_cls == c |
|
|
|
|
n_l = nt[ci] # number of labels |
|
|
|
|
n_p = i.sum() # number of predictions |
|
|
|
|
if n_p == 0 or n_l == 0: |
|
|
|
|
continue |
|
|
|
|
|
|
|
|
|
# Accumulate FPs and TPs |
|
|
|
|
fpc = (1 - tp[i]).cumsum(0) |
|
|
|
|
tpc = tp[i].cumsum(0) |
|
|
|
|
|
|
|
|
|
# Recall |
|
|
|
|
recall = tpc / (n_l + eps) # recall curve |
|
|
|
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases |
|
|
|
|
|
|
|
|
|
# Precision |
|
|
|
|
precision = tpc / (tpc + fpc) # precision curve |
|
|
|
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score |
|
|
|
|
|
|
|
|
|
# AP from recall-precision curve |
|
|
|
|
for j in range(tp.shape[1]): |
|
|
|
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) |
|
|
|
|
if plot and j == 0: |
|
|
|
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 |
|
|
|
|
|
|
|
|
|
# Compute F1 (harmonic mean of precision and recall) |
|
|
|
|
f1 = 2 * p * r / (p + r + eps) |
|
|
|
|
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data |
|
|
|
|
names = dict(enumerate(names)) # to dict |
|
|
|
|
# TODO: plot |
|
|
|
|
''' |
|
|
|
|
if plot: |
|
|
|
|
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names) |
|
|
|
|
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1') |
|
|
|
|
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision') |
|
|
|
|
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall') |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index |
|
|
|
|
p, r, f1 = p[:, i], r[:, i], f1[:, i] |
|
|
|
|
tp = (r * nt).round() # true positives |
|
|
|
|
fp = (tp / (p + eps) - tp).round() # false positives |
|
|
|
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ap_per_class_box_and_mask( |
|
|
|
|
tp_m, |
|
|
|
|
tp_b, |
|
|
|
|
conf, |
|
|
|
|
pred_cls, |
|
|
|
|
target_cls, |
|
|
|
|
plot=False, |
|
|
|
|
save_dir=".", |
|
|
|
|
names=(), |
|
|
|
|
): |
|
|
|
|
""" |
|
|
|
|
Args: |
|
|
|
|
tp_b: tp of boxes. |
|
|
|
|
tp_m: tp of masks. |
|
|
|
|
other arguments see `func: ap_per_class`. |
|
|
|
|
""" |
|
|
|
|
results_boxes = ap_per_class(tp_b, |
|
|
|
|
conf, |
|
|
|
|
pred_cls, |
|
|
|
|
target_cls, |
|
|
|
|
plot=plot, |
|
|
|
|
save_dir=save_dir, |
|
|
|
|
names=names, |
|
|
|
|
prefix="Box")[2:] |
|
|
|
|
results_masks = ap_per_class(tp_m, |
|
|
|
|
conf, |
|
|
|
|
pred_cls, |
|
|
|
|
target_cls, |
|
|
|
|
plot=plot, |
|
|
|
|
save_dir=save_dir, |
|
|
|
|
names=names, |
|
|
|
|
prefix="Mask")[2:] |
|
|
|
|
|
|
|
|
|
results = { |
|
|
|
|
"boxes": { |
|
|
|
|
"p": results_boxes[0], |
|
|
|
|
"r": results_boxes[1], |
|
|
|
|
"ap": results_boxes[3], |
|
|
|
|
"f1": results_boxes[2], |
|
|
|
|
"ap_class": results_boxes[4]}, |
|
|
|
|
"masks": { |
|
|
|
|
"p": results_masks[0], |
|
|
|
|
"r": results_masks[1], |
|
|
|
|
"ap": results_masks[3], |
|
|
|
|
"f1": results_masks[2], |
|
|
|
|
"ap_class": results_masks[4]}} |
|
|
|
|
return results |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Metric: |
|
|
|
|
|
|
|
|
|
def __init__(self) -> None: |
|
|
|
|
self.p = [] # (nc, ) |
|
|
|
|
self.r = [] # (nc, ) |
|
|
|
|
self.f1 = [] # (nc, ) |
|
|
|
|
self.all_ap = [] # (nc, 10) |
|
|
|
|
self.ap_class_index = [] # (nc, ) |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def ap50(self): |
|
|
|
|
"""AP@0.5 of all classes. |
|
|
|
|
Return: |
|
|
|
|
(nc, ) or []. |
|
|
|
|
""" |
|
|
|
|
return self.all_ap[:, 0] if len(self.all_ap) else [] |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def ap(self): |
|
|
|
|
"""AP@0.5:0.95 |
|
|
|
|
Return: |
|
|
|
|
(nc, ) or []. |
|
|
|
|
""" |
|
|
|
|
return self.all_ap.mean(1) if len(self.all_ap) else [] |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def mp(self): |
|
|
|
|
"""mean precision of all classes. |
|
|
|
|
Return: |
|
|
|
|
float. |
|
|
|
|
""" |
|
|
|
|
return self.p.mean() if len(self.p) else 0.0 |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def mr(self): |
|
|
|
|
"""mean recall of all classes. |
|
|
|
|
Return: |
|
|
|
|
float. |
|
|
|
|
""" |
|
|
|
|
return self.r.mean() if len(self.r) else 0.0 |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def map50(self): |
|
|
|
|
"""Mean AP@0.5 of all classes. |
|
|
|
|
Return: |
|
|
|
|
float. |
|
|
|
|
""" |
|
|
|
|
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def map(self): |
|
|
|
|
"""Mean AP@0.5:0.95 of all classes. |
|
|
|
|
Return: |
|
|
|
|
float. |
|
|
|
|
""" |
|
|
|
|
return self.all_ap.mean() if len(self.all_ap) else 0.0 |
|
|
|
|
|
|
|
|
|
def mean_results(self): |
|
|
|
|
"""Mean of results, return mp, mr, map50, map""" |
|
|
|
|
return (self.mp, self.mr, self.map50, self.map) |
|
|
|
|
|
|
|
|
|
def class_result(self, i): |
|
|
|
|
"""class-aware result, return p[i], r[i], ap50[i], ap[i]""" |
|
|
|
|
return (self.p[i], self.r[i], self.ap50[i], self.ap[i]) |
|
|
|
|
|
|
|
|
|
def get_maps(self, nc): |
|
|
|
|
maps = np.zeros(nc) + self.map |
|
|
|
|
for i, c in enumerate(self.ap_class_index): |
|
|
|
|
maps[c] = self.ap[i] |
|
|
|
|
return maps |
|
|
|
|
|
|
|
|
|
def update(self, results): |
|
|
|
|
""" |
|
|
|
|
Args: |
|
|
|
|
results: tuple(p, r, ap, f1, ap_class) |
|
|
|
|
""" |
|
|
|
|
p, r, all_ap, f1, ap_class_index = results |
|
|
|
|
self.p = p |
|
|
|
|
self.r = r |
|
|
|
|
self.all_ap = all_ap |
|
|
|
|
self.f1 = f1 |
|
|
|
|
self.ap_class_index = ap_class_index |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Metrics: |
|
|
|
|
"""Metric for boxes and masks.""" |
|
|
|
|
|
|
|
|
|
def __init__(self) -> None: |
|
|
|
|
self.metric_box = Metric() |
|
|
|
|
self.metric_mask = Metric() |
|
|
|
|
|
|
|
|
|
def update(self, results): |
|
|
|
|
""" |
|
|
|
|
Args: |
|
|
|
|
results: Dict{'boxes': Dict{}, 'masks': Dict{}} |
|
|
|
|
""" |
|
|
|
|
self.metric_box.update(list(results["boxes"].values())) |
|
|
|
|
self.metric_mask.update(list(results["masks"].values())) |
|
|
|
|
|
|
|
|
|
def mean_results(self): |
|
|
|
|
return self.metric_box.mean_results() + self.metric_mask.mean_results() |
|
|
|
|
|
|
|
|
|
def class_result(self, i): |
|
|
|
|
return self.metric_box.class_result(i) + self.metric_mask.class_result(i) |
|
|
|
|
|
|
|
|
|
def get_maps(self, nc): |
|
|
|
|
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def ap_class_index(self): |
|
|
|
|
# boxes and masks have the same ap_class_index |
|
|
|
|
return self.metric_box.ap_class_index |
|
|
|
|