|
|
@ -0,0 +1,135 @@ |
|
|
|
|
|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
|
|
|
|
|
|
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING |
|
|
|
|
|
|
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
|
|
from importlib.metadata import version |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import dvclive |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert not TESTS_RUNNING # do not log pytest |
|
|
|
|
|
|
|
assert version('dvclive') |
|
|
|
|
|
|
|
except (ImportError, AssertionError): |
|
|
|
|
|
|
|
dvclive = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# DVCLive logger instance |
|
|
|
|
|
|
|
live = None |
|
|
|
|
|
|
|
_processed_plots = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# `on_fit_epoch_end` is called on final validation (probably need to be fixed) |
|
|
|
|
|
|
|
# for now this is the way we distinguish final evaluation of the best model vs |
|
|
|
|
|
|
|
# last epoch validation |
|
|
|
|
|
|
|
_training_epoch = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _logger_disabled(): |
|
|
|
|
|
|
|
return os.getenv('ULTRALYTICS_DVC_DISABLED', 'false').lower() == 'true' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_images(image_path, prefix=''): |
|
|
|
|
|
|
|
if live: |
|
|
|
|
|
|
|
live.log_image(os.path.join(prefix, image_path.name), image_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_plots(plots, prefix=''): |
|
|
|
|
|
|
|
for name, params in plots.items(): |
|
|
|
|
|
|
|
timestamp = params['timestamp'] |
|
|
|
|
|
|
|
if _processed_plots.get(name, None) != timestamp: |
|
|
|
|
|
|
|
_log_images(name, prefix) |
|
|
|
|
|
|
|
_processed_plots[name] = timestamp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_confusion_matrix(validator): |
|
|
|
|
|
|
|
targets = [] |
|
|
|
|
|
|
|
preds = [] |
|
|
|
|
|
|
|
matrix = validator.confusion_matrix.matrix |
|
|
|
|
|
|
|
names = list(validator.names.values()) |
|
|
|
|
|
|
|
if validator.confusion_matrix.task == 'detect': |
|
|
|
|
|
|
|
names += ['background'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for ti, pred in enumerate(matrix.T.astype(int)): |
|
|
|
|
|
|
|
for pi, num in enumerate(pred): |
|
|
|
|
|
|
|
targets.extend([names[ti]] * num) |
|
|
|
|
|
|
|
preds.extend([names[pi]] * num) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer): |
|
|
|
|
|
|
|
try: |
|
|
|
|
|
|
|
global live |
|
|
|
|
|
|
|
if not _logger_disabled(): |
|
|
|
|
|
|
|
live = dvclive.Live(save_dvc_exp=True) |
|
|
|
|
|
|
|
LOGGER.info( |
|
|
|
|
|
|
|
'DVCLive is detected and auto logging is enabled (can be disabled with `ULTRALYTICS_DVC_DISABLED=true`).' |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
LOGGER.debug('DVCLive is detected and auto logging is disabled via `ULTRALYTICS_DVC_DISABLED`.') |
|
|
|
|
|
|
|
live = None |
|
|
|
|
|
|
|
except Exception as e: |
|
|
|
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_end(trainer): |
|
|
|
|
|
|
|
_log_plots(trainer.plots, 'train') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_start(trainer): |
|
|
|
|
|
|
|
if live: |
|
|
|
|
|
|
|
live.log_params(trainer.args) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_epoch_start(trainer): |
|
|
|
|
|
|
|
global _training_epoch |
|
|
|
|
|
|
|
_training_epoch = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
|
|
|
|
|
|
global _training_epoch |
|
|
|
|
|
|
|
if live and _training_epoch: |
|
|
|
|
|
|
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} |
|
|
|
|
|
|
|
for metric, value in all_metrics.items(): |
|
|
|
|
|
|
|
live.log_metric(metric, value) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if trainer.epoch == 0: |
|
|
|
|
|
|
|
model_info = { |
|
|
|
|
|
|
|
'model/parameters': get_num_params(trainer.model), |
|
|
|
|
|
|
|
'model/GFLOPs': round(get_flops(trainer.model), 3), |
|
|
|
|
|
|
|
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for metric, value in model_info.items(): |
|
|
|
|
|
|
|
live.log_metric(metric, value, plot=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_log_plots(trainer.plots, 'train') |
|
|
|
|
|
|
|
_log_plots(trainer.validator.plots, 'val') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
live.next_step() |
|
|
|
|
|
|
|
_training_epoch = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer): |
|
|
|
|
|
|
|
if live: |
|
|
|
|
|
|
|
# At the end log the best metrics. It runs validator on the best model internally. |
|
|
|
|
|
|
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} |
|
|
|
|
|
|
|
for metric, value in all_metrics.items(): |
|
|
|
|
|
|
|
live.log_metric(metric, value, plot=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_log_plots(trainer.plots, 'eval') |
|
|
|
|
|
|
|
_log_plots(trainer.validator.plots, 'eval') |
|
|
|
|
|
|
|
_log_confusion_matrix(trainer.validator) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if trainer.best.exists(): |
|
|
|
|
|
|
|
live.log_artifact(trainer.best, copy=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
live.end() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = { |
|
|
|
|
|
|
|
'on_pretrain_routine_start': on_pretrain_routine_start, |
|
|
|
|
|
|
|
'on_pretrain_routine_end': on_pretrain_routine_end, |
|
|
|
|
|
|
|
'on_train_start': on_train_start, |
|
|
|
|
|
|
|
'on_train_epoch_start': on_train_epoch_start, |
|
|
|
|
|
|
|
'on_fit_epoch_end': on_fit_epoch_end, |
|
|
|
|
|
|
|
'on_train_end': on_train_end} if dvclive else {} |