@ -154,19 +154,19 @@ class Exporter:
""" Returns list of exported files/dirs after running callbacks. """
self . run_callbacks ( ' on_export_start ' )
t = time . time ( )
for ma t = self . args . format . lower ( ) # to lowercase
if for ma t in ( ' tensorrt ' , ' trt ' ) : # 'engine' aliases
for ma t = ' engine '
if for ma t in ( ' mlmodel ' , ' mlpackage ' , ' mlprogram ' , ' apple ' , ' ios ' , ' coreml ' ) : # 'coreml' aliases
for ma t = ' coreml '
fmt = self . args . format . lower ( ) # to lowercase
if fmt in ( ' tensorrt ' , ' trt ' ) : # 'engine' aliases
fmt = ' engine '
if fmt in ( ' mlmodel ' , ' mlpackage ' , ' mlprogram ' , ' apple ' , ' ios ' , ' coreml ' ) : # 'coreml' aliases
fmt = ' coreml '
fmts = tuple ( export_formats ( ) [ ' Argument ' ] [ 1 : ] ) # available export formats
flags = [ x == for ma t for x in fmts ]
flags = [ x == fmt for x in fmts ]
if sum ( flags ) != 1 :
raise ValueError ( f " Invalid export format= ' { for ma t } ' . Valid formats are { fmts } " )
raise ValueError ( f " Invalid export format= ' { fmt } ' . Valid formats are { fmts } " )
jit , onnx , xml , engine , coreml , saved_model , pb , tflite , edgetpu , tfjs , paddle , ncnn = flags # export booleans
# Device
if for ma t == ' engine ' and self . args . device is None :
if fmt == ' engine ' and self . args . device is None :
LOGGER . warning ( ' WARNING ⚠️ TensorRT requires GPU export, automatically assigning device=0 ' )
self . args . device = ' 0 '
self . device = select_device ( ' cpu ' if self . args . device is None else self . args . device )
@ -188,7 +188,7 @@ class Exporter:
im = torch . zeros ( self . args . batch , 3 , * self . imgsz ) . to ( self . device )
file = Path (
getattr ( model , ' pt_path ' , None ) or getattr ( model , ' yaml_file ' , None ) or model . yaml . get ( ' yaml_file ' , ' ' ) )
if file . suffix in ( ' .yaml ' , ' .yml ' ) :
if file . suffix in { ' .yaml ' , ' .yml ' } :
file = Path ( file . name )
# Update model
@ -222,8 +222,8 @@ class Exporter:
self . im = im
self . model = model
self . file = file
self . output_shape = tuple ( y . shape ) if isinstance ( y , torch . Tensor ) else \
tuple ( tuple ( x . shape if isinstance ( x , torch . Tensor ) else [ ] ) for x in y )
self . output_shape = tuple ( y . shape ) if isinstance ( y , torch . Tensor ) else tuple (
tuple ( x . shape if isinstance ( x , torch . Tensor ) else [ ] ) for x in y )
self . pretty_name = Path ( self . model . yaml . get ( ' yaml_file ' , self . file ) ) . stem . replace ( ' yolo ' , ' YOLO ' )
data = model . args [ ' data ' ] if hasattr ( model , ' args ' ) and isinstance ( model . args , dict ) else ' '
description = f ' Ultralytics { self . pretty_name } model { f " trained on { data } " if data else " " } '
@ -280,7 +280,7 @@ class Exporter:
s = ' ' if square else f " WARNING ⚠️ non-PyTorch val requires square images, ' imgsz= { self . imgsz } ' will not " \
f " work. Use export ' imgsz= { max ( self . imgsz ) } ' if val is required. "
imgsz = self . imgsz [ 0 ] if square else str ( self . imgsz ) [ 1 : - 1 ] . replace ( ' ' , ' ' )
predict_data = f ' data= { data } ' if model . task == ' segment ' and for ma t == ' pb ' else ' '
predict_data = f ' data= { data } ' if model . task == ' segment ' and fmt == ' pb ' else ' '
q = ' int8 ' if self . args . int8 else ' half ' if self . args . half else ' ' # quantization
LOGGER . info ( f ' \n Export complete ( { time . time ( ) - t : .1f } s) '
f " \n Results saved to { colorstr ( ' bold ' , file . parent . resolve ( ) ) } "
@ -750,10 +750,10 @@ class Exporter:
if subprocess . run ( cmd , stdout = subprocess . DEVNULL , stderr = subprocess . DEVNULL , shell = True ) . returncode != 0 :
LOGGER . info ( f ' \n { prefix } export requires Edge TPU compiler. Attempting install from { help_url } ' )
sudo = subprocess . run ( ' sudo --version >/dev/null ' , shell = True ) . returncode == 0 # sudo installed on system
for c in (
' curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add - ' ,
' echo " deb https://packages.cloud.google.com/apt coral-edgetpu-stable main " | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list ' ,
' sudo apt-get update ' , ' sudo apt-get install edgetpu-compiler ' ) :
for c in ( ' curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add - ' ,
' echo " deb https://packages.cloud.google.com/apt coral-edgetpu-stable main " | '
' sudo tee /etc/apt/sources.list.d/coral-edgetpu.list ' , ' sudo apt-get update ' ,
' sudo apt-get install edgetpu-compiler ' ) :
subprocess . run ( c if sudo else c . replace ( ' sudo ' , ' ' ) , shell = True , check = True )
ver = subprocess . run ( cmd , shell = True , capture_output = True , check = True ) . stdout . decode ( ) . split ( ) [ - 1 ]
@ -788,7 +788,7 @@ class Exporter:
LOGGER . info ( f " { prefix } running ' { cmd } ' " )
subprocess . run ( cmd , shell = True )
if ' ' in str ( f ) :
if ' ' in f :
LOGGER . warning ( f " { prefix } WARNING ⚠️ your model may not work correctly with spaces in path ' { f } ' . " )
# f_json = Path(f) / 'model.json' # *.json path