You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

350 lines
13 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
"""
Ultralytics Results, Boxes and Masks classes for handling inference results
Usage: See https://docs.ultralytics.com/predict/
"""
from copy import deepcopy
from functools import lru_cache
import numpy as np
import torch
import torchvision.transforms.functional as F
from ultralytics.yolo.utils import LOGGER, ops
from ultralytics.yolo.utils.plotting import Annotator, colors
class Results:
"""
A class for storing and manipulating inference results.
Args:
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
orig_img (tuple, optional): Original image size.
Attributes:
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
orig_img (tuple, optional): Original image size.
data (torch.Tensor): The raw masks tensor
"""
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None) -> None:
self.orig_img = orig_img
self.orig_shape = orig_img.shape[:2]
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = probs if probs is not None else None
self.names = names
self.path = path
self._keys = (k for k in ('boxes', 'masks', 'probs') if getattr(self, k) is not None)
def pandas(self):
pass
# TODO masks.pandas + boxes.pandas + cls.pandas
def __getitem__(self, idx):
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for k in self._keys:
setattr(r, k, getattr(self, k)[idx])
return r
def update(self, boxes=None, masks=None, probs=None):
if boxes is not None:
self.boxes = Boxes(boxes, self.orig_shape)
if masks is not None:
self.masks = Masks(masks, self.orig_shape)
if boxes is not None:
self.probs = probs
def cpu(self):
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for k in self._keys:
setattr(r, k, getattr(self, k).cpu())
return r
def numpy(self):
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for k in self._keys:
setattr(r, k, getattr(self, k).numpy())
return r
def cuda(self):
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for k in self._keys:
setattr(r, k, getattr(self, k).cuda())
return r
def to(self, *args, **kwargs):
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for k in self._keys:
setattr(r, k, getattr(self, k).to(*args, **kwargs))
return r
def __len__(self):
for k in self._keys:
return len(getattr(self, k))
def __str__(self):
return ''.join(getattr(self, k).__str__() for k in self._keys)
def __repr__(self):
return ''.join(getattr(self, k).__repr__() for k in self._keys)
def __getattr__(self, attr):
name = self.__class__.__name__
raise AttributeError(f"""
'{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are:
Attributes:
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
orig_shape (tuple, optional): Original image size.
""")
def plot(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
"""
Plots the given result on an input RGB image. Accepts cv2(numpy) or PIL Image
Args:
show_conf (bool): Show confidence
line_width (Float): The line width of boxes. Automatically scaled to img size if not provided
font_size (Float): The font size of . Automatically scaled to img size if not provided
"""
img = deepcopy(self.orig_img)
annotator = Annotator(img, line_width, font_size, font, pil, example)
boxes = self.boxes
masks = self.masks
logits = self.probs
names = self.names
if boxes is not None:
for d in reversed(boxes):
cls, conf = d.cls.squeeze(), d.conf.squeeze()
c = int(cls)
label = (f'{names[c]}' if names else f'{c}') + (f'{conf:.2f}' if show_conf else '')
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
if masks is not None:
im = torch.as_tensor(img, dtype=torch.float16, device=masks.data.device).permute(2, 0, 1).flip(0)
im = F.resize(im.contiguous(), masks.data.shape[1:]) / 255
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im)
if logits is not None:
top5i = logits.argsort(0, descending=True)[:5].tolist() # top 5 indices
text = f"{', '.join(f'{names[j] if names else j} {logits[j]:.2f}' for j in top5i)}, "
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors
return img
class Boxes:
"""
A class for storing and manipulating detection boxes.
Args:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6).
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
Properties:
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
data (torch.Tensor): The raw bboxes tensor
"""
def __init__(self, boxes, orig_shape) -> None:
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in {6, 7}, f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls
# TODO
self.is_track = n == 7
self.boxes = boxes
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \
else np.asarray(orig_shape)
@property
def xyxy(self):
return self.boxes[:, :4]
@property
def conf(self):
return self.boxes[:, -2]
@property
def cls(self):
return self.boxes[:, -1]
@property
def id(self):
return self.boxes[:, -3] if self.is_track else None
@property
@lru_cache(maxsize=2) # maxsize 1 should suffice
def xywh(self):
return ops.xyxy2xywh(self.xyxy)
@property
@lru_cache(maxsize=2)
def xyxyn(self):
return self.xyxy / self.orig_shape[[1, 0, 1, 0]]
@property
@lru_cache(maxsize=2)
def xywhn(self):
return self.xywh / self.orig_shape[[1, 0, 1, 0]]
def cpu(self):
return Boxes(self.boxes.cpu(), self.orig_shape)
def numpy(self):
return Boxes(self.boxes.numpy(), self.orig_shape)
def cuda(self):
return Boxes(self.boxes.cuda(), self.orig_shape)
def to(self, *args, **kwargs):
return Boxes(self.boxes.to(*args, **kwargs), self.orig_shape)
def pandas(self):
LOGGER.info('results.pandas() method not yet implemented')
'''
new = copy(self) # return copy
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
return new
'''
@property
def shape(self):
return self.boxes.shape
@property
def data(self):
return self.boxes
def __len__(self): # override len(results)
return len(self.boxes)
def __str__(self):
return self.boxes.__str__()
def __repr__(self):
return (f'Ultralytics YOLO {self.__class__} masks\n' + f'type: {type(self.boxes)}\n' +
f'shape: {self.boxes.shape}\n' + f'dtype: {self.boxes.dtype}\n + {self.boxes.__repr__()}')
def __getitem__(self, idx):
return Boxes(self.boxes[idx], self.orig_shape)
def __getattr__(self, attr):
name = self.__class__.__name__
raise AttributeError(f"""
'{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are:
Attributes:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6).
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
Properties:
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
""")
class Masks:
"""
A class for storing and manipulating detection masks.
Args:
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Properties:
segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks.
"""
def __init__(self, masks, orig_shape) -> None:
self.masks = masks # N, h, w
self.orig_shape = orig_shape
@property
@lru_cache(maxsize=1)
def segments(self):
return [
ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True)
for x in ops.masks2segments(self.masks)]
@property
def shape(self):
return self.masks.shape
@property
def data(self):
return self.masks
def cpu(self):
return Masks(self.masks.cpu(), self.orig_shape)
def numpy(self):
return Masks(self.masks.numpy(), self.orig_shape)
def cuda(self):
return Masks(self.masks.cuda(), self.orig_shape)
def to(self, *args, **kwargs):
return Masks(self.masks.to(*args, **kwargs), self.orig_shape)
def __len__(self): # override len(results)
return len(self.masks)
def __str__(self):
return self.masks.__str__()
def __repr__(self):
return (f'Ultralytics YOLO {self.__class__} masks\n' + f'type: {type(self.masks)}\n' +
f'shape: {self.masks.shape}\n' + f'dtype: {self.masks.dtype}\n + {self.masks.__repr__()}')
def __getitem__(self, idx):
return Masks(self.masks[idx], self.orig_shape)
def __getattr__(self, attr):
name = self.__class__.__name__
raise AttributeError(f"""
'{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are:
Attributes:
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Properties:
segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks.
""")