You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

200 lines
5.4 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
from pathlib import Path
import cv2
import numpy as np
import torch
from PIL import Image
from ultralytics import YOLO
from ultralytics.yolo.data.build import load_inference_source
from ultralytics.yolo.utils import LINUX, ROOT, SETTINGS
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
CFG = 'yolov8n.yaml'
SOURCE = ROOT / 'assets/bus.jpg'
SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg')
SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png')
# Convert SOURCE to greyscale and 4-ch
im = Image.open(SOURCE)
im.convert('L').save(SOURCE_GREYSCALE) # greyscale
im.convert('RGBA').save(SOURCE_RGBA) # 4-ch PNG with alpha
def test_model_forward():
model = YOLO(CFG)
model(SOURCE)
def test_model_info():
model = YOLO(CFG)
model.info()
model = YOLO(MODEL)
model.info(verbose=True)
def test_model_fuse():
model = YOLO(CFG)
model.fuse()
model = YOLO(MODEL)
model.fuse()
def test_predict_dir():
model = YOLO(MODEL)
model(source=ROOT / 'assets')
def test_predict_img():
model = YOLO(MODEL)
output = model(source=Image.open(SOURCE), save=True, verbose=True) # PIL
assert len(output) == 1, 'predict test failed'
img = cv2.imread(str(SOURCE))
output = model(source=img, save=True, save_txt=True) # ndarray
assert len(output) == 1, 'predict test failed'
output = model(source=[img, img], save=True, save_txt=True) # batch
assert len(output) == 2, 'predict test failed'
output = model(source=[img, img], save=True, stream=True) # stream
assert len(list(output)) == 2, 'predict test failed'
tens = torch.zeros(320, 640, 3)
output = model(tens.numpy())
assert len(output) == 1, 'predict test failed'
# test multiple source
imgs = [
SOURCE, # filename
Path(SOURCE), # Path
'https://ultralytics.com/images/zidane.jpg', # URI
cv2.imread(str(SOURCE)), # OpenCV
Image.open(SOURCE), # PIL
np.zeros((320, 640, 3))] # numpy
output = model(imgs)
assert len(output) == 6, 'predict test failed!'
def test_predict_grey_and_4ch():
model = YOLO(MODEL)
for f in SOURCE_RGBA, SOURCE_GREYSCALE:
for source in Image.open(f), cv2.imread(str(f)), f:
model(source, save=True, verbose=True)
def test_val():
model = YOLO(MODEL)
model.val(data='coco8.yaml', imgsz=32)
def test_train_scratch():
model = YOLO(CFG)
model.train(data='coco8.yaml', epochs=1, imgsz=32)
model(SOURCE)
def test_train_pretrained():
model = YOLO(MODEL)
model.train(data='coco8.yaml', epochs=1, imgsz=32)
model(SOURCE)
def test_export_torchscript():
model = YOLO(MODEL)
f = model.export(format='torchscript')
YOLO(f)(SOURCE) # exported model inference
def test_export_onnx():
model = YOLO(MODEL)
f = model.export(format='onnx')
YOLO(f)(SOURCE) # exported model inference
def test_export_openvino():
model = YOLO(MODEL)
f = model.export(format='openvino')
YOLO(f)(SOURCE) # exported model inference
def test_export_coreml(): # sourcery skip: move-assign
model = YOLO(MODEL)
model.export(format='coreml')
# if MACOS:
# YOLO(f)(SOURCE) # model prediction only supported on macOS
def test_export_tflite(enabled=False):
# TF suffers from install conflicts on Windows and macOS
if enabled and LINUX:
model = YOLO(MODEL)
f = model.export(format='tflite')
YOLO(f)(SOURCE)
def test_export_pb(enabled=False):
# TF suffers from install conflicts on Windows and macOS
if enabled and LINUX:
model = YOLO(MODEL)
f = model.export(format='pb')
YOLO(f)(SOURCE)
def test_export_paddle(enabled=False):
# Paddle protobuf requirements conflicting with onnx protobuf requirements
if enabled:
model = YOLO(MODEL)
model.export(format='paddle')
def test_all_model_yamls():
for m in list((ROOT / 'models').rglob('*.yaml')):
YOLO(m.name)
def test_workflow():
model = YOLO(MODEL)
model.train(data='coco8.yaml', epochs=1, imgsz=32)
model.val()
model.predict(SOURCE)
model.export(format='onnx') # export a model to ONNX format
def test_predict_callback_and_setup():
def on_predict_batch_end(predictor):
# results -> List[batch_size]
path, _, im0s, _, _ = predictor.batch
# print('on_predict_batch_end', im0s[0].shape)
im0s = im0s if isinstance(im0s, list) else [im0s]
bs = [predictor.dataset.bs for _ in range(len(path))]
predictor.results = zip(predictor.results, im0s, bs)
model = YOLO(MODEL)
model.add_callback('on_predict_batch_end', on_predict_batch_end)
dataset = load_inference_source(source=SOURCE, transforms=model.transforms)
bs = dataset.bs # noqa access predictor properties
results = model.predict(dataset, stream=True) # source already setup
for _, (result, im0, bs) in enumerate(results):
print('test_callback', im0.shape)
print('test_callback', bs)
boxes = result.boxes # Boxes object for bbox outputs
print(boxes)
def test_result():
model = YOLO('yolov8n-seg.pt')
res = model([SOURCE, SOURCE])
res[0].cpu().numpy()
res[0].plot(show_conf=False)
print(res[0].path)
model = YOLO('yolov8n.pt')
res = model(SOURCE)
res[0].plot()
print(res[0].path)
model = YOLO('yolov8n-cls.pt')
res = model(SOURCE)
res[0].plot()
print(res[0].path)