|
|
|
import json
|
|
|
|
import platform
|
|
|
|
from collections import OrderedDict, namedtuple
|
|
|
|
from pathlib import Path
|
|
|
|
from urllib.parse import urlparse
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, ROOT
|
|
|
|
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version
|
|
|
|
from ultralytics.yolo.utils.downloads import attempt_download, is_url
|
|
|
|
from ultralytics.yolo.utils.files import yaml_load
|
|
|
|
from ultralytics.yolo.utils.ops import xywh2xyxy
|
|
|
|
|
|
|
|
|
|
|
|
class AutoBackend(nn.Module):
|
|
|
|
# YOLOv5 MultiBackend class for python inference on various backends
|
|
|
|
def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
|
|
|
# Usage:
|
|
|
|
# PyTorch: weights = *.pt
|
|
|
|
# TorchScript: *.torchscript
|
|
|
|
# ONNX Runtime: *.onnx
|
|
|
|
# ONNX OpenCV DNN: *.onnx --dnn
|
|
|
|
# OpenVINO: *.xml
|
|
|
|
# CoreML: *.mlmodel
|
|
|
|
# TensorRT: *.engine
|
|
|
|
# TensorFlow SavedModel: *_saved_model
|
|
|
|
# TensorFlow GraphDef: *.pb
|
|
|
|
# TensorFlow Lite: *.tflite
|
|
|
|
# TensorFlow Edge TPU: *_edgetpu.tflite
|
|
|
|
# PaddlePaddle: *_paddle_model
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
w = str(weights[0] if isinstance(weights, list) else weights)
|
|
|
|
nn_module = isinstance(weights, torch.nn.Module)
|
|
|
|
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
|
|
|
|
fp16 &= pt or jit or onnx or engine or nn_module # FP16
|
|
|
|
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
|
|
|
stride = 32 # default stride
|
|
|
|
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
|
|
|
if not (pt or triton or nn_module):
|
|
|
|
w = attempt_download(w) # download if not local
|
|
|
|
|
|
|
|
# NOTE: special case: in-memory pytorch model
|
|
|
|
if nn_module:
|
|
|
|
model = weights.to(device)
|
|
|
|
model = model.fuse() if fuse else model
|
|
|
|
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
|
|
|
model.half() if fp16 else model.float()
|
|
|
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
|
|
|
elif pt: # PyTorch
|
|
|
|
from ultralytics.nn.tasks import attempt_load_weights
|
|
|
|
model = attempt_load_weights(weights if isinstance(weights, list) else w,
|
|
|
|
device=device,
|
|
|
|
inplace=True,
|
|
|
|
fuse=fuse)
|
|
|
|
stride = max(int(model.stride.max()), 32) # model stride
|
|
|
|
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
|
|
|
model.half() if fp16 else model.float()
|
|
|
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
|
|
|
elif jit: # TorchScript
|
|
|
|
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
|
|
|
extra_files = {'config.txt': ''} # model metadata
|
|
|
|
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
|
|
|
model.half() if fp16 else model.float()
|
|
|
|
if extra_files['config.txt']: # load metadata dict
|
|
|
|
d = json.loads(extra_files['config.txt'],
|
|
|
|
object_hook=lambda d: {int(k) if k.isdigit() else k: v
|
|
|
|
for k, v in d.items()})
|
|
|
|
stride, names = int(d['stride']), d['names']
|
|
|
|
elif dnn: # ONNX OpenCV DNN
|
|
|
|
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
|
|
|
check_requirements('opencv-python>=4.5.4')
|
|
|
|
net = cv2.dnn.readNetFromONNX(w)
|
|
|
|
elif onnx: # ONNX Runtime
|
|
|
|
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
|
|
|
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
|
|
|
import onnxruntime
|
|
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
|
|
|
session = onnxruntime.InferenceSession(w, providers=providers)
|
|
|
|
output_names = [x.name for x in session.get_outputs()]
|
|
|
|
meta = session.get_modelmeta().custom_metadata_map # metadata
|
|
|
|
if 'stride' in meta:
|
|
|
|
stride, names = int(meta['stride']), eval(meta['names'])
|
|
|
|
elif xml: # OpenVINO
|
|
|
|
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
|
|
|
check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
|
|
|
from openvino.runtime import Core, Layout, get_batch # noqa
|
|
|
|
ie = Core()
|
|
|
|
if not Path(w).is_file(): # if not *.xml
|
|
|
|
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
|
|
|
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
|
|
|
|
if network.get_parameters()[0].get_layout().empty:
|
|
|
|
network.get_parameters()[0].set_layout(Layout("NCHW"))
|
|
|
|
batch_dim = get_batch(network)
|
|
|
|
if batch_dim.is_static:
|
|
|
|
batch_size = batch_dim.get_length()
|
|
|
|
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
|
|
|
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
|
|
|
elif engine: # TensorRT
|
|
|
|
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
|
|
|
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
|
|
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
|
|
|
if device.type == 'cpu':
|
|
|
|
device = torch.device('cuda:0')
|
|
|
|
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
|
|
|
logger = trt.Logger(trt.Logger.INFO)
|
|
|
|
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
|
|
|
model = runtime.deserialize_cuda_engine(f.read())
|
|
|
|
context = model.create_execution_context()
|
|
|
|
bindings = OrderedDict()
|
|
|
|
output_names = []
|
|
|
|
fp16 = False # default updated below
|
|
|
|
dynamic = False
|
|
|
|
for i in range(model.num_bindings):
|
|
|
|
name = model.get_binding_name(i)
|
|
|
|
dtype = trt.nptype(model.get_binding_dtype(i))
|
|
|
|
if model.binding_is_input(i):
|
|
|
|
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
|
|
|
dynamic = True
|
|
|
|
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
|
|
|
if dtype == np.float16:
|
|
|
|
fp16 = True
|
|
|
|
else: # output
|
|
|
|
output_names.append(name)
|
|
|
|
shape = tuple(context.get_binding_shape(i))
|
|
|
|
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
|
|
|
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
|
|
|
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
|
|
|
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
|
|
|
elif coreml: # CoreML
|
|
|
|
LOGGER.info(f'Loading {w} for CoreML inference...')
|
|
|
|
import coremltools as ct
|
|
|
|
model = ct.models.MLModel(w)
|
|
|
|
elif saved_model: # TF SavedModel
|
|
|
|
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
|
|
|
import tensorflow as tf
|
|
|
|
keras = False # assume TF1 saved_model
|
|
|
|
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
|
|
|
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
|
|
|
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
def wrap_frozen_graph(gd, inputs, outputs):
|
|
|
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
|
|
|
ge = x.graph.as_graph_element
|
|
|
|
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
|
|
|
|
|
|
|
def gd_outputs(gd):
|
|
|
|
name_list, input_list = [], []
|
|
|
|
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
|
|
|
name_list.append(node.name)
|
|
|
|
input_list.extend(node.input)
|
|
|
|
return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
|
|
|
|
|
|
|
|
gd = tf.Graph().as_graph_def() # TF GraphDef
|
|
|
|
with open(w, 'rb') as f:
|
|
|
|
gd.ParseFromString(f.read())
|
|
|
|
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
|
|
|
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
|
|
|
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
|
|
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
|
|
|
except ImportError:
|
|
|
|
import tensorflow as tf
|
|
|
|
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
|
|
|
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
|
|
|
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
|
|
|
delegate = {
|
|
|
|
'Linux': 'libedgetpu.so.1',
|
|
|
|
'Darwin': 'libedgetpu.1.dylib',
|
|
|
|
'Windows': 'edgetpu.dll'}[platform.system()]
|
|
|
|
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
|
|
|
else: # TFLite
|
|
|
|
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
|
|
|
interpreter = Interpreter(model_path=w) # load TFLite model
|
|
|
|
interpreter.allocate_tensors() # allocate
|
|
|
|
input_details = interpreter.get_input_details() # inputs
|
|
|
|
output_details = interpreter.get_output_details() # outputs
|
|
|
|
elif tfjs: # TF.js
|
|
|
|
raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
|
|
|
|
elif paddle: # PaddlePaddle
|
|
|
|
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
|
|
|
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
|
|
|
import paddle.inference as pdi
|
|
|
|
if not Path(w).is_file(): # if not *.pdmodel
|
|
|
|
w = next(Path(w).rglob('*.pdmodel')) # get *.xml file from *_openvino_model dir
|
|
|
|
weights = Path(w).with_suffix('.pdiparams')
|
|
|
|
config = pdi.Config(str(w), str(weights))
|
|
|
|
if cuda:
|
|
|
|
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
|
|
|
predictor = pdi.create_predictor(config)
|
|
|
|
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
|
|
|
output_names = predictor.get_output_names()
|
|
|
|
elif triton: # NVIDIA Triton Inference Server
|
|
|
|
LOGGER.info('Triton Inference Server not supported...')
|
|
|
|
'''
|
|
|
|
TODO:
|
|
|
|
check_requirements('tritonclient[all]')
|
|
|
|
from utils.triton import TritonRemoteModel
|
|
|
|
model = TritonRemoteModel(url=w)
|
|
|
|
nhwc = model.runtime.startswith("tensorflow")
|
|
|
|
'''
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(f'ERROR: {w} is not a supported format')
|
|
|
|
|
|
|
|
# class names
|
|
|
|
if 'names' not in locals():
|
|
|
|
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
|
|
|
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
|
|
|
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
|
|
|
|
|
|
|
self.__dict__.update(locals()) # assign all variables to self
|
|
|
|
|
|
|
|
def forward(self, im, augment=False, visualize=False):
|
|
|
|
# YOLOv5 MultiBackend inference
|
|
|
|
b, ch, h, w = im.shape # batch, channel, height, width
|
|
|
|
if self.fp16 and im.dtype != torch.float16:
|
|
|
|
im = im.half() # to FP16
|
|
|
|
if self.nhwc:
|
|
|
|
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
|
|
|
|
|
|
|
if self.pt or self.nn_module: # PyTorch
|
|
|
|
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
|
|
|
elif self.jit: # TorchScript
|
|
|
|
y = self.model(im)
|
|
|
|
elif self.dnn: # ONNX OpenCV DNN
|
|
|
|
im = im.cpu().numpy() # torch to numpy
|
|
|
|
self.net.setInput(im)
|
|
|
|
y = self.net.forward()
|
|
|
|
elif self.onnx: # ONNX Runtime
|
|
|
|
im = im.cpu().numpy() # torch to numpy
|
|
|
|
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
|
|
|
elif self.xml: # OpenVINO
|
|
|
|
im = im.cpu().numpy() # FP32
|
|
|
|
y = list(self.executable_network([im]).values())
|
|
|
|
elif self.engine: # TensorRT
|
|
|
|
if self.dynamic and im.shape != self.bindings['images'].shape:
|
|
|
|
i = self.model.get_binding_index('images')
|
|
|
|
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
|
|
|
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
|
|
|
for name in self.output_names:
|
|
|
|
i = self.model.get_binding_index(name)
|
|
|
|
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
|
|
|
s = self.bindings['images'].shape
|
|
|
|
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
|
|
|
self.binding_addrs['images'] = int(im.data_ptr())
|
|
|
|
self.context.execute_v2(list(self.binding_addrs.values()))
|
|
|
|
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
|
|
|
elif self.coreml: # CoreML
|
|
|
|
im = im.cpu().numpy()
|
|
|
|
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
|
|
|
# im = im.resize((192, 320), Image.ANTIALIAS)
|
|
|
|
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
|
|
|
if 'confidence' in y:
|
|
|
|
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
|
|
|
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
|
|
|
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
|
|
|
else:
|
|
|
|
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
|
|
|
elif self.paddle: # PaddlePaddle
|
|
|
|
im = im.cpu().numpy().astype(np.float32)
|
|
|
|
self.input_handle.copy_from_cpu(im)
|
|
|
|
self.predictor.run()
|
|
|
|
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
|
|
|
elif self.triton: # NVIDIA Triton Inference Server
|
|
|
|
y = self.model(im)
|
|
|
|
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
|
|
|
im = im.cpu().numpy()
|
|
|
|
if self.saved_model: # SavedModel
|
|
|
|
y = self.model(im, training=False) if self.keras else self.model(im)
|
|
|
|
elif self.pb: # GraphDef
|
|
|
|
y = self.frozen_func(x=self.tf.constant(im))
|
|
|
|
else: # Lite or Edge TPU
|
|
|
|
input = self.input_details[0]
|
|
|
|
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
|
|
|
if int8:
|
|
|
|
scale, zero_point = input['quantization']
|
|
|
|
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
|
|
|
self.interpreter.set_tensor(input['index'], im)
|
|
|
|
self.interpreter.invoke()
|
|
|
|
y = []
|
|
|
|
for output in self.output_details:
|
|
|
|
x = self.interpreter.get_tensor(output['index'])
|
|
|
|
if int8:
|
|
|
|
scale, zero_point = output['quantization']
|
|
|
|
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
|
|
|
y.append(x)
|
|
|
|
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
|
|
|
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
|
|
|
|
|
|
|
if isinstance(y, (list, tuple)):
|
|
|
|
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
|
|
|
else:
|
|
|
|
return self.from_numpy(y)
|
|
|
|
|
|
|
|
def from_numpy(self, x):
|
|
|
|
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
|
|
|
|
|
|
|
def warmup(self, imgsz=(1, 3, 640, 640)):
|
|
|
|
# Warmup model by running inference once
|
|
|
|
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
|
|
|
|
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
|
|
|
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
|
|
|
for _ in range(2 if self.jit else 1): #
|
|
|
|
self.forward(im) # warmup
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _model_type(p='path/to/model.pt'):
|
|
|
|
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
|
|
|
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
|
|
|
from ultralytics.yolo.engine.exporter import export_formats
|
|
|
|
sf = list(export_formats().Suffix) # export suffixes
|
|
|
|
if not is_url(p, check=False) and not isinstance(p, str):
|
|
|
|
check_suffix(p, sf) # checks
|
|
|
|
url = urlparse(p) # if url may be Triton inference server
|
|
|
|
types = [s in Path(p).name for s in sf]
|
|
|
|
types[8] &= not types[9] # tflite &= not edgetpu
|
|
|
|
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
|
|
|
|
return types + [triton]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _load_metadata(f=Path('path/to/meta.yaml')):
|
|
|
|
from ultralytics.yolo.utils.files import yaml_load
|
|
|
|
|
|
|
|
# Load metadata from meta.yaml if it exists
|
|
|
|
if f.exists():
|
|
|
|
d = yaml_load(f)
|
|
|
|
return d['stride'], d['names'] # assign stride, names
|
|
|
|
return None, None
|