|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
"""
|
|
|
|
# RT-DETR model interface
|
|
|
|
"""
|
|
|
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from ultralytics.nn.tasks import DetectionModel, attempt_load_one_weight, yaml_model_load
|
|
|
|
from ultralytics.yolo.cfg import get_cfg
|
|
|
|
from ultralytics.yolo.engine.exporter import Exporter
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT
|
|
|
|
from ultralytics.yolo.utils.checks import check_imgsz
|
|
|
|
from ultralytics.yolo.utils.torch_utils import model_info
|
|
|
|
|
|
|
|
from ...yolo.utils.torch_utils import smart_inference_mode
|
|
|
|
from .predict import RTDETRPredictor
|
|
|
|
from .val import RTDETRValidator
|
|
|
|
|
|
|
|
|
|
|
|
class RTDETR:
|
|
|
|
|
|
|
|
def __init__(self, model='rtdetr-l.pt') -> None:
|
|
|
|
if model and not model.endswith('.pt') and not model.endswith('.yaml'):
|
|
|
|
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.')
|
|
|
|
# Load or create new YOLO model
|
|
|
|
self.predictor = None
|
|
|
|
suffix = Path(model).suffix
|
|
|
|
if suffix == '.yaml':
|
|
|
|
self._new(model)
|
|
|
|
else:
|
|
|
|
self._load(model)
|
|
|
|
|
|
|
|
def _new(self, cfg: str, verbose=True):
|
|
|
|
cfg_dict = yaml_model_load(cfg)
|
|
|
|
self.cfg = cfg
|
|
|
|
self.task = 'detect'
|
|
|
|
self.model = DetectionModel(cfg_dict, verbose=verbose) # build model
|
|
|
|
|
|
|
|
# Below added to allow export from yamls
|
|
|
|
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
|
|
|
self.model.task = self.task
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
def _load(self, weights: str):
|
|
|
|
self.model, _ = attempt_load_one_weight(weights)
|
|
|
|
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
|
|
|
self.task = self.model.args['task']
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
def predict(self, source, stream=False, **kwargs):
|
|
|
|
"""
|
|
|
|
Perform prediction using the YOLO model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
|
|
|
Accepts all source types accepted by the YOLO model.
|
|
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
|
|
|
**kwargs : Additional keyword arguments passed to the predictor.
|
|
|
|
Check the 'configuration' section in the documentation for all available options.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
|
|
|
"""
|
|
|
|
overrides = dict(conf=0.25, task='detect', mode='predict')
|
|
|
|
overrides.update(kwargs) # prefer kwargs
|
|
|
|
if not self.predictor:
|
|
|
|
self.predictor = RTDETRPredictor(overrides=overrides)
|
|
|
|
self.predictor.setup_model(model=self.model)
|
|
|
|
else: # only update args if predictor is already setup
|
|
|
|
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
|
|
|
return self.predictor(source, stream=stream)
|
|
|
|
|
|
|
|
def train(self, **kwargs):
|
|
|
|
"""Function trains models but raises an error as RTDETR models do not support training."""
|
|
|
|
raise NotImplementedError("RTDETR models don't support training")
|
|
|
|
|
|
|
|
def val(self, **kwargs):
|
|
|
|
"""Run validation given dataset."""
|
|
|
|
overrides = dict(task='detect', mode='val')
|
|
|
|
overrides.update(kwargs) # prefer kwargs
|
|
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
|
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
|
|
|
validator = RTDETRValidator(args=args)
|
|
|
|
validator(model=self.model)
|
|
|
|
self.metrics = validator.metrics
|
|
|
|
return validator.metrics
|
|
|
|
|
|
|
|
def info(self, verbose=True):
|
|
|
|
"""Get model info"""
|
|
|
|
return model_info(self.model, verbose=verbose)
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
def export(self, **kwargs):
|
|
|
|
"""
|
|
|
|
Export model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
|
|
|
"""
|
|
|
|
overrides = dict(task='detect')
|
|
|
|
overrides.update(kwargs)
|
|
|
|
overrides['mode'] = 'export'
|
|
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
|
|
args.task = self.task
|
|
|
|
if args.imgsz == DEFAULT_CFG.imgsz:
|
|
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
|
|
|
if args.batch == DEFAULT_CFG.batch:
|
|
|
|
args.batch = 1 # default to 1 if not modified
|
|
|
|
return Exporter(overrides=args)(model=self.model)
|