|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
|
|
|
# Example usage: yolo train data=coco-pose.yaml
|
|
|
|
# parent
|
|
|
|
# ├── ultralytics
|
|
|
|
# └── datasets
|
|
|
|
# └── coco-pose ← downloads here (20.1 GB)
|
|
|
|
|
|
|
|
|
|
|
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
|
|
path: ../datasets/coco-pose # dataset root dir
|
|
|
|
train: train2017.txt # train images (relative to 'path') 118287 images
|
|
|
|
val: val2017.txt # val images (relative to 'path') 5000 images
|
|
|
|
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
|
|
|
|
|
|
|
# Keypoints
|
|
|
|
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
|
|
|
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
|
|
|
|
|
|
|
# Classes
|
|
|
|
names:
|
|
|
|
0: person
|
|
|
|
|
|
|
|
# Download script/URL (optional)
|
|
|
|
download: |
|
|
|
|
from ultralytics.yolo.utils.downloads import download
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
# Download labels
|
|
|
|
dir = Path(yaml['path']) # dataset root dir
|
|
|
|
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
|
|
|
urls = [url + 'coco2017labels-pose.zip'] # labels
|
|
|
|
download(urls, dir=dir.parent)
|
|
|
|
# Download data
|
|
|
|
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
|
|
|
|
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
|
|
|
|
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
|
|
|
|
download(urls, dir=dir / 'images', threads=3)
|