You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

319 lines
14 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
import contextlib
import re
import shutil
import sys
from difflib import get_close_matches
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Union
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_PATH, LOGGER, ROOT, USER_CONFIG_DIR,
IterableSimpleNamespace, __version__, checks, colorstr, yaml_load, yaml_print)
CLI_HELP_MSG = \
f"""
Arguments received: {str(['yolo'] + sys.argv[1:])}. Note that Ultralytics 'yolo' commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of [detect, segment, classify]
MODE (required) is one of [train, val, predict, export, track]
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/cfg or with 'yolo cfg'
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
5. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com/cli
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Define keys for arg type checks
CFG_FLOAT_KEYS = {'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear', 'fl_gamma'}
CFG_FRACTION_KEYS = {
'dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr', 'label_smoothing',
'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud', 'fliplr', 'mosaic', 'mixup', 'copy_paste',
'conf', 'iou'} # fractional floats limited to 0.0 - 1.0
CFG_INT_KEYS = {
'epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride',
'line_thickness', 'workspace', 'nbs', 'save_period'}
CFG_BOOL_KEYS = {
'save', 'exist_ok', 'pretrained', 'verbose', 'deterministic', 'single_cls', 'image_weights', 'rect', 'cos_lr',
'overlap_mask', 'val', 'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf',
'save_crop', 'hide_labels', 'hide_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader'}
def cfg2dict(cfg):
"""
Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
Inputs:
cfg (str) or (Path) or (SimpleNamespace): Configuration object to be converted to a dictionary.
Returns:
cfg (dict): Configuration object in dictionary format.
"""
if isinstance(cfg, (str, Path)):
cfg = yaml_load(cfg) # load dict
elif isinstance(cfg, SimpleNamespace):
cfg = vars(cfg) # convert to dict
return cfg
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
"""
Load and merge configuration data from a file or dictionary.
Args:
cfg (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data.
overrides (str) or (Dict), optional: Overrides in the form of a file name or a dictionary. Default is None.
Returns:
(SimpleNamespace): Training arguments namespace.
"""
cfg = cfg2dict(cfg)
# Merge overrides
if overrides:
overrides = cfg2dict(overrides)
check_cfg_mismatch(cfg, overrides)
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
# Special handling for numeric project/names
for k in 'project', 'name':
if k in cfg and isinstance(cfg[k], (int, float)):
cfg[k] = str(cfg[k])
# Type and Value checks
for k, v in cfg.items():
if v is not None: # None values may be from optional args
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
elif k in CFG_FRACTION_KEYS:
if not isinstance(v, (int, float)):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
if not (0.0 <= v <= 1.0):
raise ValueError(f"'{k}={v}' is an invalid value. "
f"Valid '{k}' values are between 0.0 and 1.0.")
elif k in CFG_INT_KEYS and not isinstance(v, int):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"'{k}' must be an int (i.e. '{k}=8')")
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')")
# Return instance
return IterableSimpleNamespace(**cfg)
def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
"""
This function checks for any mismatched keys between a custom configuration list and a base configuration list.
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
Inputs:
- custom (Dict): a dictionary of custom configuration options
- base (Dict): a dictionary of base configuration options
"""
base, custom = (set(x.keys()) for x in (base, custom))
mismatched = [x for x in custom if x not in base]
if mismatched:
string = ''
for x in mismatched:
matches = get_close_matches(x, base) # key list
matches = [f'{k}={DEFAULT_CFG_DICT[k]}' if DEFAULT_CFG_DICT.get(k) is not None else k for k in matches]
match_str = f'Similar arguments are i.e. {matches}.' if matches else ''
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
raise SyntaxError(string + CLI_HELP_MSG) from e
def merge_equals_args(args: List[str]) -> List[str]:
"""
Merges arguments around isolated '=' args in a list of strings.
The function considers cases where the first argument ends with '=' or the second starts with '=',
as well as when the middle one is an equals sign.
Args:
args (List[str]): A list of strings where each element is an argument.
Returns:
List[str]: A list of strings where the arguments around isolated '=' are merged.
"""
new_args = []
for i, arg in enumerate(args):
if arg == '=' and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
new_args[-1] += f'={args[i + 1]}'
del args[i + 1]
elif arg.endswith('=') and i < len(args) - 1 and '=' not in args[i + 1]: # merge ['arg=', 'val']
new_args.append(f'{arg}{args[i + 1]}')
del args[i + 1]
elif arg.startswith('=') and i > 0: # merge ['arg', '=val']
new_args[-1] += arg
else:
new_args.append(arg)
return new_args
def entrypoint(debug=''):
"""
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed
to the package.
This function allows for:
- passing mandatory YOLO args as a list of strings
- specifying the task to be performed, either 'detect', 'segment' or 'classify'
- specifying the mode, either 'train', 'val', 'test', or 'predict'
- running special modes like 'checks'
- passing overrides to the package's configuration
It uses the package's default cfg and initializes it using the passed overrides.
Then it calls the CLI function with the composed cfg
"""
args = (debug.split(' ') if debug else sys.argv)[1:]
if not args: # no arguments passed
LOGGER.info(CLI_HELP_MSG)
return
# Define tasks and modes
tasks = 'detect', 'segment', 'classify'
modes = 'train', 'val', 'predict', 'export', 'track', 'benchmark'
special = {
'help': lambda: LOGGER.info(CLI_HELP_MSG),
'checks': checks.check_yolo,
'version': lambda: LOGGER.info(__version__),
'settings': lambda: yaml_print(USER_CONFIG_DIR / 'settings.yaml'),
'cfg': lambda: yaml_print(DEFAULT_CFG_PATH),
'copy-cfg': copy_default_cfg}
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in tasks}, **{k: None for k in modes}, **special}
# Define common mis-uses of special commands, i.e. -h, -help, --help
special.update({k[0]: v for k, v in special.items()}) # singular
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith('s')}) # singular
special = {**special, **{f'-{k}': v for k, v in special.items()}, **{f'--{k}': v for k, v in special.items()}}
overrides = {} # basic overrides, i.e. imgsz=320
for a in merge_equals_args(args): # merge spaces around '=' sign
if a.startswith('--'):
LOGGER.warning(f"WARNING ⚠ '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
a = a[2:]
if '=' in a:
try:
re.sub(r' *= *', '=', a) # remove spaces around equals sign
k, v = a.split('=', 1) # split on first '=' sign
assert v, f"missing '{k}' value"
if k == 'cfg': # custom.yaml passed
LOGGER.info(f'Overriding {DEFAULT_CFG_PATH} with {v}')
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != 'cfg'}
else:
if v.lower() == 'none':
v = None
elif v.lower() == 'true':
v = True
elif v.lower() == 'false':
v = False
else:
with contextlib.suppress(Exception):
v = eval(v)
overrides[k] = v
except (NameError, SyntaxError, ValueError, AssertionError) as e:
check_cfg_mismatch(full_args_dict, {a: ''}, e)
elif a in tasks:
overrides['task'] = a
elif a in modes:
overrides['mode'] = a
elif a in special:
special[a]()
return
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True
elif a in DEFAULT_CFG_DICT:
raise SyntaxError(f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}")
else:
check_cfg_mismatch(full_args_dict, {a: ''})
# Defaults
task2data = dict(detect='coco128.yaml', segment='coco128-seg.yaml', classify='imagenet100')
# Mode
mode = overrides.get('mode', None)
if mode is None:
mode = DEFAULT_CFG.mode or 'predict'
LOGGER.warning(f"WARNING ⚠ 'mode' is missing. Valid modes are {modes}. Using default 'mode={mode}'.")
elif mode not in modes:
if mode not in ('checks', checks):
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {modes}.\n{CLI_HELP_MSG}")
LOGGER.warning("WARNING ⚠ 'yolo mode=checks' is deprecated. Use 'yolo checks' instead.")
checks.check_yolo()
return
# Model
model = overrides.pop('model', DEFAULT_CFG.model)
if model is None:
model = 'yolov8n.pt'
LOGGER.warning(f"WARNING ⚠ 'model' is missing. Using default 'model={model}'.")
from ultralytics.yolo.engine.model import YOLO
overrides['model'] = model
model = YOLO(model)
# Task
# if task and task != model.task:
# LOGGER.warning(f"WARNING ⚠ 'task={task}' conflicts with {model.task} model {overrides['model']}. "
# f"Inheriting 'task={model.task}' from {overrides['model']} and ignoring 'task={task}'.")
overrides['task'] = overrides.get('task', model.task)
model.task = overrides['task']
# Mode
if mode in {'predict', 'track'} and 'source' not in overrides:
overrides['source'] = DEFAULT_CFG.source or ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'
LOGGER.warning(f"WARNING ⚠ 'source' is missing. Using default 'source={overrides['source']}'.")
elif mode in ('train', 'val'):
if 'data' not in overrides:
overrides['data'] = task2data.get(overrides['task'], DEFAULT_CFG.data)
LOGGER.warning(f"WARNING ⚠ 'data' is missing. Using {model.task} default 'data={overrides['data']}'.")
elif mode == 'export':
if 'format' not in overrides:
overrides['format'] = DEFAULT_CFG.format or 'torchscript'
LOGGER.warning(f"WARNING ⚠ 'format' is missing. Using default 'format={overrides['format']}'.")
# Run command in python
# getattr(model, mode)(**vars(get_cfg(overrides=overrides))) # default args using default.yaml
getattr(model, mode)(**overrides) # default args from model
# Special modes --------------------------------------------------------------------------------------------------------
def copy_default_cfg():
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')
shutil.copy2(DEFAULT_CFG_PATH, new_file)
LOGGER.info(f'{DEFAULT_CFG_PATH} copied to {new_file}\n'
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8")
if __name__ == '__main__':
# entrypoint(debug='yolo predict model=yolov8n.pt')
entrypoint(debug='')