---
comments: true
description: Official documentation for YOLOv8 by Ultralytics. Learn how to train, validate, predict and export models in various formats. Including detailed performance stats.
keywords: YOLOv8, Ultralytics, object detection, pretrained models, training, validation, prediction, export models, COCO, ImageNet, PyTorch, ONNX, CoreML
---
# Object Detection
< img width = "1024" src = "https://user-images.githubusercontent.com/26833433/243418624-5785cb93-74c9-4541-9179-d5c6782d491a.png" alt = "Object detection examples" >
Object detection is a task that involves identifying the location and class of objects in an image or video stream.
The output of an object detector is a set of bounding boxes that enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
< p align = "center" >
< br >
< iframe width = "720" height = "405" src = "https://www.youtube.com/embed/5ku7npMrW40?si=6HQO1dDXunV8gekh"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
< / iframe >
< br >
< strong > Watch:< / strong > Object Detection with Pre-trained Ultralytics YOLOv8 Model.
< / p >
!!! Tip "Tip"
YOLOv8 Detect models are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on [COCO ](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml ).
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the [COCO ](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml ) dataset, while Classify models are pretrained on the [ImageNet ](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml ) dataset.
[Models ](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models ) download automatically from the latest Ultralytics [release ](https://github.com/ultralytics/assets/releases ) on first use.
| Model | size< br > < sup > (pixels) | mAP< sup > val< br > 50-95 | Speed< br > < sup > CPU ONNX< br > (ms) | Speed< br > < sup > A100 TensorRT< br > (ms) | params< br > < sup > (M) | FLOPs< br > < sup > (B) |
|--------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
| [YOLOv8n ](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt ) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s ](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt ) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m ](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt ) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l ](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt ) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x ](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt ) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAP< sup > val</ sup > ** values are for single-model single-scale on [COCO val2017 ](http://cocodataset.org ) dataset.
< br > Reproduce by `yolo val detect data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d ](https://aws.amazon.com/ec2/instance-types/p4/ )
instance.
< br > Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
## Train
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration ](../usage/cfg.md ) page.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.yaml') # build a new model from YAML
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Build a new model from YAML and start training from scratch
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
# Start training from a pretrained *.pt model
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
```
### Dataset format
YOLO detection dataset format can be found in detail in the [Dataset Guide ](../datasets/detect/index.md ). To convert your existing dataset from other formats (like COCO etc.) to YOLO format, please use [JSON2YOLO ](https://github.com/ultralytics/JSON2YOLO ) tool by Ultralytics.
## Val
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # a list contains map50-95 of each category
```
=== "CLI"
```bash
yolo detect val model=yolov8n.pt # val official model
yolo detect val model=path/to/best.pt # val custom model
```
## Predict
Use a trained YOLOv8n model to run predictions on images.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
```
=== "CLI"
```bash
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
See full `predict` mode details in the [Predict ](https://docs.ultralytics.com/modes/predict/ ) page.
## Export
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained model
# Export the model
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
Available YOLOv8 export formats are in the table below. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n.onnx` . Usage examples are shown for your model after export completes.
| Format | `format` Argument | Model | Metadata | Arguments |
|--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------|
| [PyTorch ](https://pytorch.org/ ) | - | `yolov8n.pt` | ✅ | - |
| [TorchScript ](https://pytorch.org/docs/stable/jit.html ) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz` , `optimize` |
| [ONNX ](https://onnx.ai/ ) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz` , `half` , `dynamic` , `simplify` , `opset` |
| [OpenVINO ](https://docs.openvino.ai/latest/index.html ) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz` , `half` , `int8` |
| [TensorRT ](https://developer.nvidia.com/tensorrt ) | `engine` | `yolov8n.engine` | ✅ | `imgsz` , `half` , `dynamic` , `simplify` , `workspace` |
| [CoreML ](https://github.com/apple/coremltools ) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz` , `half` , `int8` , `nms` |
| [TF SavedModel ](https://www.tensorflow.org/guide/saved_model ) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz` , `keras` , `int8` |
| [TF GraphDef ](https://www.tensorflow.org/api_docs/python/tf/Graph ) | `pb` | `yolov8n.pb` | ❌ | `imgsz` |
| [TF Lite ](https://www.tensorflow.org/lite ) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz` , `half` , `int8` |
| [TF Edge TPU ](https://coral.ai/docs/edgetpu/models-intro/ ) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js ](https://www.tensorflow.org/js ) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` , `half` , `int8` |
| [PaddlePaddle ](https://github.com/PaddlePaddle ) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
| [ncnn ](https://github.com/Tencent/ncnn ) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz` , `half` |
See full `export` details in the [Export ](https://docs.ultralytics.com/modes/export/ ) page.