|
|
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
|
|
|
|
|
|
|
try:
|
|
|
|
import clearml
|
|
|
|
from clearml import Task
|
|
|
|
|
|
|
|
assert hasattr(clearml, '__version__')
|
|
|
|
except (ImportError, AssertionError):
|
|
|
|
clearml = None
|
|
|
|
|
|
|
|
|
|
|
|
def _log_images(imgs_dict, group="", step=0):
|
|
|
|
task = Task.current_task()
|
|
|
|
if task:
|
|
|
|
for k, v in imgs_dict.items():
|
|
|
|
task.get_logger().report_image(group, k, step, v)
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer):
|
|
|
|
# TODO: reuse existing task
|
|
|
|
task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8',
|
|
|
|
task_name=trainer.args.name,
|
|
|
|
tags=['YOLOv8'],
|
|
|
|
output_uri=True,
|
|
|
|
reuse_last_task_id=False,
|
|
|
|
auto_connect_frameworks={'pytorch': False})
|
|
|
|
task.connect(dict(trainer.args), name='General')
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_epoch_end(trainer):
|
|
|
|
if trainer.epoch == 1:
|
|
|
|
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, "Mosaic", trainer.epoch)
|
|
|
|
|
|
|
|
|
|
|
|
def on_val_end(trainer):
|
|
|
|
if trainer.epoch == 0:
|
|
|
|
model_info = {
|
|
|
|
"Parameters": get_num_params(trainer.model),
|
|
|
|
"GFLOPs": round(get_flops(trainer.model), 1),
|
|
|
|
"Inference speed (ms/img)": round(trainer.validator.speed[1], 1)}
|
|
|
|
Task.current_task().connect(model_info, name='Model')
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer):
|
|
|
|
Task.current_task().update_output_model(model_path=str(trainer.best),
|
|
|
|
model_name=trainer.args.name,
|
|
|
|
auto_delete_file=False)
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = {
|
|
|
|
"on_pretrain_routine_start": on_pretrain_routine_start,
|
|
|
|
"on_train_epoch_end": on_train_epoch_end,
|
|
|
|
"on_val_end": on_val_end,
|
|
|
|
"on_train_end": on_train_end} if clearml else {}
|