|
|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
"""
|
|
|
|
|
Ultralytics Results, Boxes and Masks classes for handling inference results
|
|
|
|
|
|
|
|
|
|
Usage: See https://docs.ultralytics.com/modes/predict/
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from copy import deepcopy
|
|
|
|
|
from functools import lru_cache
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
from ultralytics.data.augment import LetterBox
|
|
|
|
|
from ultralytics.utils import LOGGER, SimpleClass, deprecation_warn, ops
|
|
|
|
|
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BaseTensor(SimpleClass):
|
|
|
|
|
"""
|
|
|
|
|
Base tensor class with additional methods for easy manipulation and device handling.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, data, orig_shape) -> None:
|
|
|
|
|
"""Initialize BaseTensor with data and original shape.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
|
|
|
|
|
orig_shape (tuple): Original shape of image.
|
|
|
|
|
"""
|
|
|
|
|
assert isinstance(data, (torch.Tensor, np.ndarray))
|
|
|
|
|
self.data = data
|
|
|
|
|
self.orig_shape = orig_shape
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def shape(self):
|
|
|
|
|
"""Return the shape of the data tensor."""
|
|
|
|
|
return self.data.shape
|
|
|
|
|
|
|
|
|
|
def cpu(self):
|
|
|
|
|
"""Return a copy of the tensor on CPU memory."""
|
|
|
|
|
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)
|
|
|
|
|
|
|
|
|
|
def numpy(self):
|
|
|
|
|
"""Return a copy of the tensor as a numpy array."""
|
|
|
|
|
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)
|
|
|
|
|
|
|
|
|
|
def cuda(self):
|
|
|
|
|
"""Return a copy of the tensor on GPU memory."""
|
|
|
|
|
return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)
|
|
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
|
"""Return a copy of the tensor with the specified device and dtype."""
|
|
|
|
|
return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)
|
|
|
|
|
|
|
|
|
|
def __len__(self): # override len(results)
|
|
|
|
|
"""Return the length of the data tensor."""
|
|
|
|
|
return len(self.data)
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
|
"""Return a BaseTensor with the specified index of the data tensor."""
|
|
|
|
|
return self.__class__(self.data[idx], self.orig_shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Results(SimpleClass):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating inference results.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
orig_img (numpy.ndarray): The original image as a numpy array.
|
|
|
|
|
path (str): The path to the image file.
|
|
|
|
|
names (dict): A dictionary of class names.
|
|
|
|
|
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
|
|
|
|
|
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
|
|
|
|
|
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
|
|
|
|
|
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
orig_img (numpy.ndarray): The original image as a numpy array.
|
|
|
|
|
orig_shape (tuple): The original image shape in (height, width) format.
|
|
|
|
|
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
|
|
|
|
masks (Masks, optional): A Masks object containing the detection masks.
|
|
|
|
|
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
|
|
|
|
|
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
|
|
|
|
|
speed (dict): A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image.
|
|
|
|
|
names (dict): A dictionary of class names.
|
|
|
|
|
path (str): The path to the image file.
|
|
|
|
|
_keys (tuple): A tuple of attribute names for non-empty attributes.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
|
|
|
|
|
"""Initialize the Results class."""
|
|
|
|
|
self.orig_img = orig_img
|
|
|
|
|
self.orig_shape = orig_img.shape[:2]
|
|
|
|
|
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
|
|
|
|
|
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
|
|
|
|
|
self.probs = Probs(probs) if probs is not None else None
|
|
|
|
|
self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
|
|
|
|
|
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
|
|
|
|
|
self.names = names
|
|
|
|
|
self.path = path
|
|
|
|
|
self.save_dir = None
|
|
|
|
|
self._keys = 'boxes', 'masks', 'probs', 'keypoints'
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
|
"""Return a Results object for the specified index."""
|
|
|
|
|
return self._apply('__getitem__', idx)
|
|
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
|
"""Return the number of detections in the Results object."""
|
|
|
|
|
for k in self._keys:
|
|
|
|
|
v = getattr(self, k)
|
|
|
|
|
if v is not None:
|
|
|
|
|
return len(v)
|
|
|
|
|
|
|
|
|
|
def update(self, boxes=None, masks=None, probs=None):
|
|
|
|
|
"""Update the boxes, masks, and probs attributes of the Results object."""
|
|
|
|
|
if boxes is not None:
|
|
|
|
|
ops.clip_boxes(boxes, self.orig_shape) # clip boxes
|
|
|
|
|
self.boxes = Boxes(boxes, self.orig_shape)
|
|
|
|
|
if masks is not None:
|
|
|
|
|
self.masks = Masks(masks, self.orig_shape)
|
|
|
|
|
if probs is not None:
|
|
|
|
|
self.probs = probs
|
|
|
|
|
|
|
|
|
|
def _apply(self, fn, *args, **kwargs):
|
|
|
|
|
r = self.new()
|
|
|
|
|
for k in self._keys:
|
|
|
|
|
v = getattr(self, k)
|
|
|
|
|
if v is not None:
|
|
|
|
|
setattr(r, k, getattr(v, fn)(*args, **kwargs))
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
def cpu(self):
|
|
|
|
|
"""Return a copy of the Results object with all tensors on CPU memory."""
|
|
|
|
|
return self._apply('cpu')
|
|
|
|
|
|
|
|
|
|
def numpy(self):
|
|
|
|
|
"""Return a copy of the Results object with all tensors as numpy arrays."""
|
|
|
|
|
return self._apply('numpy')
|
|
|
|
|
|
|
|
|
|
def cuda(self):
|
|
|
|
|
"""Return a copy of the Results object with all tensors on GPU memory."""
|
|
|
|
|
return self._apply('cuda')
|
|
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
|
"""Return a copy of the Results object with tensors on the specified device and dtype."""
|
|
|
|
|
return self._apply('to', *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
def new(self):
|
|
|
|
|
"""Return a new Results object with the same image, path, and names."""
|
|
|
|
|
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
|
|
|
|
|
|
|
|
|
|
def plot(
|
|
|
|
|
self,
|
|
|
|
|
conf=True,
|
|
|
|
|
line_width=None,
|
|
|
|
|
font_size=None,
|
|
|
|
|
font='Arial.ttf',
|
|
|
|
|
pil=False,
|
|
|
|
|
img=None,
|
|
|
|
|
im_gpu=None,
|
|
|
|
|
kpt_radius=5,
|
|
|
|
|
kpt_line=True,
|
|
|
|
|
labels=True,
|
|
|
|
|
boxes=True,
|
|
|
|
|
masks=True,
|
|
|
|
|
probs=True,
|
|
|
|
|
**kwargs # deprecated args TODO: remove support in 8.2
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
conf (bool): Whether to plot the detection confidence score.
|
|
|
|
|
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
|
|
|
|
|
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
|
|
|
|
|
font (str): The font to use for the text.
|
|
|
|
|
pil (bool): Whether to return the image as a PIL Image.
|
|
|
|
|
img (numpy.ndarray): Plot to another image. if not, plot to original image.
|
|
|
|
|
im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
|
|
|
|
|
kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
|
|
|
|
|
kpt_line (bool): Whether to draw lines connecting keypoints.
|
|
|
|
|
labels (bool): Whether to plot the label of bounding boxes.
|
|
|
|
|
boxes (bool): Whether to plot the bounding boxes.
|
|
|
|
|
masks (bool): Whether to plot the masks.
|
|
|
|
|
probs (bool): Whether to plot classification probability
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
(numpy.ndarray): A numpy array of the annotated image.
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
```python
|
|
|
|
|
from PIL import Image
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
|
|
model = YOLO('yolov8n.pt')
|
|
|
|
|
results = model('bus.jpg') # results list
|
|
|
|
|
for r in results:
|
|
|
|
|
im_array = r.plot() # plot a BGR numpy array of predictions
|
|
|
|
|
im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
|
|
|
|
|
im.show() # show image
|
|
|
|
|
im.save('results.jpg') # save image
|
|
|
|
|
```
|
|
|
|
|
"""
|
|
|
|
|
if img is None and isinstance(self.orig_img, torch.Tensor):
|
|
|
|
|
img = (self.orig_img[0].detach().permute(1, 2, 0).cpu().contiguous() * 255).to(torch.uint8).numpy()
|
|
|
|
|
|
|
|
|
|
# Deprecation warn TODO: remove in 8.2
|
|
|
|
|
if 'show_conf' in kwargs:
|
|
|
|
|
deprecation_warn('show_conf', 'conf')
|
|
|
|
|
conf = kwargs['show_conf']
|
|
|
|
|
assert isinstance(conf, bool), '`show_conf` should be of boolean type, i.e, show_conf=True/False'
|
|
|
|
|
|
|
|
|
|
if 'line_thickness' in kwargs:
|
|
|
|
|
deprecation_warn('line_thickness', 'line_width')
|
|
|
|
|
line_width = kwargs['line_thickness']
|
|
|
|
|
assert isinstance(line_width, int), '`line_width` should be of int type, i.e, line_width=3'
|
|
|
|
|
|
|
|
|
|
names = self.names
|
|
|
|
|
pred_boxes, show_boxes = self.boxes, boxes
|
|
|
|
|
pred_masks, show_masks = self.masks, masks
|
|
|
|
|
pred_probs, show_probs = self.probs, probs
|
|
|
|
|
annotator = Annotator(
|
|
|
|
|
deepcopy(self.orig_img if img is None else img),
|
|
|
|
|
line_width,
|
|
|
|
|
font_size,
|
|
|
|
|
font,
|
|
|
|
|
pil or (pred_probs is not None and show_probs), # Classify tasks default to pil=True
|
|
|
|
|
example=names)
|
|
|
|
|
|
|
|
|
|
# Plot Segment results
|
|
|
|
|
if pred_masks and show_masks:
|
|
|
|
|
if im_gpu is None:
|
|
|
|
|
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
|
|
|
|
|
im_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
|
|
|
|
|
2, 0, 1).flip(0).contiguous() / 255
|
|
|
|
|
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
|
|
|
|
|
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
|
|
|
|
|
|
|
|
|
|
# Plot Detect results
|
|
|
|
|
if pred_boxes and show_boxes:
|
|
|
|
|
for d in reversed(pred_boxes):
|
|
|
|
|
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
|
|
|
|
|
name = ('' if id is None else f'id:{id} ') + names[c]
|
|
|
|
|
label = (f'{name} {conf:.2f}' if conf else name) if labels else None
|
|
|
|
|
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
|
|
|
|
|
|
|
|
|
|
# Plot Classify results
|
|
|
|
|
if pred_probs is not None and show_probs:
|
|
|
|
|
text = ',\n'.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)
|
|
|
|
|
x = round(self.orig_shape[0] * 0.03)
|
|
|
|
|
annotator.text([x, x], text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
|
|
|
|
|
|
|
|
|
# Plot Pose results
|
|
|
|
|
if self.keypoints is not None:
|
|
|
|
|
for k in reversed(self.keypoints.data):
|
|
|
|
|
annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)
|
|
|
|
|
|
|
|
|
|
return annotator.result()
|
|
|
|
|
|
|
|
|
|
def verbose(self):
|
|
|
|
|
"""
|
|
|
|
|
Return log string for each task.
|
|
|
|
|
"""
|
|
|
|
|
log_string = ''
|
|
|
|
|
probs = self.probs
|
|
|
|
|
boxes = self.boxes
|
|
|
|
|
if len(self) == 0:
|
|
|
|
|
return log_string if probs is not None else f'{log_string}(no detections), '
|
|
|
|
|
if probs is not None:
|
|
|
|
|
log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
|
|
|
|
|
if boxes:
|
|
|
|
|
for c in boxes.cls.unique():
|
|
|
|
|
n = (boxes.cls == c).sum() # detections per class
|
|
|
|
|
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
|
|
|
|
|
return log_string
|
|
|
|
|
|
|
|
|
|
def save_txt(self, txt_file, save_conf=False):
|
|
|
|
|
"""
|
|
|
|
|
Save predictions into txt file.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
txt_file (str): txt file path.
|
|
|
|
|
save_conf (bool): save confidence score or not.
|
|
|
|
|
"""
|
|
|
|
|
boxes = self.boxes
|
|
|
|
|
masks = self.masks
|
|
|
|
|
probs = self.probs
|
|
|
|
|
kpts = self.keypoints
|
|
|
|
|
texts = []
|
|
|
|
|
if probs is not None:
|
|
|
|
|
# Classify
|
|
|
|
|
[texts.append(f'{probs.data[j]:.2f} {self.names[j]}') for j in probs.top5]
|
|
|
|
|
elif boxes:
|
|
|
|
|
# Detect/segment/pose
|
|
|
|
|
for j, d in enumerate(boxes):
|
|
|
|
|
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
|
|
|
|
|
line = (c, *d.xywhn.view(-1))
|
|
|
|
|
if masks:
|
|
|
|
|
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2)
|
|
|
|
|
line = (c, *seg)
|
|
|
|
|
if kpts is not None:
|
|
|
|
|
kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
|
|
|
|
|
line += (*kpt.reshape(-1).tolist(), )
|
|
|
|
|
line += (conf, ) * save_conf + (() if id is None else (id, ))
|
|
|
|
|
texts.append(('%g ' * len(line)).rstrip() % line)
|
|
|
|
|
|
|
|
|
|
if texts:
|
|
|
|
|
Path(txt_file).parent.mkdir(parents=True, exist_ok=True) # make directory
|
|
|
|
|
with open(txt_file, 'a') as f:
|
|
|
|
|
f.writelines(text + '\n' for text in texts)
|
|
|
|
|
|
|
|
|
|
def save_crop(self, save_dir, file_name=Path('im.jpg')):
|
|
|
|
|
"""
|
|
|
|
|
Save cropped predictions to `save_dir/cls/file_name.jpg`.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
save_dir (str | pathlib.Path): Save path.
|
|
|
|
|
file_name (str | pathlib.Path): File name.
|
|
|
|
|
"""
|
|
|
|
|
if self.probs is not None:
|
|
|
|
|
LOGGER.warning('WARNING ⚠️ Classify task do not support `save_crop`.')
|
|
|
|
|
return
|
|
|
|
|
for d in self.boxes:
|
|
|
|
|
save_one_box(d.xyxy,
|
|
|
|
|
self.orig_img.copy(),
|
|
|
|
|
file=Path(save_dir) / self.names[int(d.cls)] / f'{Path(file_name).stem}.jpg',
|
|
|
|
|
BGR=True)
|
|
|
|
|
|
|
|
|
|
def tojson(self, normalize=False):
|
|
|
|
|
"""Convert the object to JSON format."""
|
|
|
|
|
if self.probs is not None:
|
|
|
|
|
LOGGER.warning('Warning: Classify task do not support `tojson` yet.')
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
# Create list of detection dictionaries
|
|
|
|
|
results = []
|
|
|
|
|
data = self.boxes.data.cpu().tolist()
|
|
|
|
|
h, w = self.orig_shape if normalize else (1, 1)
|
|
|
|
|
for i, row in enumerate(data): # xyxy, track_id if tracking, conf, class_id
|
|
|
|
|
box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h}
|
|
|
|
|
conf = row[-2]
|
|
|
|
|
class_id = int(row[-1])
|
|
|
|
|
name = self.names[class_id]
|
|
|
|
|
result = {'name': name, 'class': class_id, 'confidence': conf, 'box': box}
|
|
|
|
|
if self.boxes.is_track:
|
|
|
|
|
result['track_id'] = int(row[-3]) # track ID
|
|
|
|
|
if self.masks:
|
|
|
|
|
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array
|
|
|
|
|
result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()}
|
|
|
|
|
if self.keypoints is not None:
|
|
|
|
|
x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor
|
|
|
|
|
result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()}
|
|
|
|
|
results.append(result)
|
|
|
|
|
|
|
|
|
|
# Convert detections to JSON
|
|
|
|
|
return json.dumps(results, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Boxes(BaseTensor):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating detection boxes.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
|
|
|
with shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
|
|
|
|
|
If present, the third last column contains track IDs.
|
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
|
|
|
|
|
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
|
|
|
|
|
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
|
|
|
|
|
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
|
|
|
|
|
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
|
|
|
|
|
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
|
|
|
|
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
|
|
|
|
|
data (torch.Tensor): The raw bboxes tensor (alias for `boxes`).
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Move the object to CPU memory.
|
|
|
|
|
numpy(): Convert the object to a numpy array.
|
|
|
|
|
cuda(): Move the object to CUDA memory.
|
|
|
|
|
to(*args, **kwargs): Move the object to the specified device.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, boxes, orig_shape) -> None:
|
|
|
|
|
"""Initialize the Boxes class."""
|
|
|
|
|
if boxes.ndim == 1:
|
|
|
|
|
boxes = boxes[None, :]
|
|
|
|
|
n = boxes.shape[-1]
|
|
|
|
|
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, track_id, conf, cls
|
|
|
|
|
super().__init__(boxes, orig_shape)
|
|
|
|
|
self.is_track = n == 7
|
|
|
|
|
self.orig_shape = orig_shape
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def xyxy(self):
|
|
|
|
|
"""Return the boxes in xyxy format."""
|
|
|
|
|
return self.data[:, :4]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def conf(self):
|
|
|
|
|
"""Return the confidence values of the boxes."""
|
|
|
|
|
return self.data[:, -2]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def cls(self):
|
|
|
|
|
"""Return the class values of the boxes."""
|
|
|
|
|
return self.data[:, -1]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def id(self):
|
|
|
|
|
"""Return the track IDs of the boxes (if available)."""
|
|
|
|
|
return self.data[:, -3] if self.is_track else None
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=2) # maxsize 1 should suffice
|
|
|
|
|
def xywh(self):
|
|
|
|
|
"""Return the boxes in xywh format."""
|
|
|
|
|
return ops.xyxy2xywh(self.xyxy)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=2)
|
|
|
|
|
def xyxyn(self):
|
|
|
|
|
"""Return the boxes in xyxy format normalized by original image size."""
|
|
|
|
|
xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
|
|
|
|
|
xyxy[..., [0, 2]] /= self.orig_shape[1]
|
|
|
|
|
xyxy[..., [1, 3]] /= self.orig_shape[0]
|
|
|
|
|
return xyxy
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=2)
|
|
|
|
|
def xywhn(self):
|
|
|
|
|
"""Return the boxes in xywh format normalized by original image size."""
|
|
|
|
|
xywh = ops.xyxy2xywh(self.xyxy)
|
|
|
|
|
xywh[..., [0, 2]] /= self.orig_shape[1]
|
|
|
|
|
xywh[..., [1, 3]] /= self.orig_shape[0]
|
|
|
|
|
return xywh
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def boxes(self):
|
|
|
|
|
"""Return the raw bboxes tensor (deprecated)."""
|
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.")
|
|
|
|
|
return self.data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Masks(BaseTensor):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating detection masks.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
segments (list): Deprecated property for segments (normalized).
|
|
|
|
|
xy (list): A list of segments in pixel coordinates.
|
|
|
|
|
xyn (list): A list of normalized segments.
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Returns the masks tensor on CPU memory.
|
|
|
|
|
numpy(): Returns the masks tensor as a numpy array.
|
|
|
|
|
cuda(): Returns the masks tensor on GPU memory.
|
|
|
|
|
to(device, dtype): Returns the masks tensor with the specified device and dtype.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, masks, orig_shape) -> None:
|
|
|
|
|
"""Initialize the Masks class with the given masks tensor and original image shape."""
|
|
|
|
|
if masks.ndim == 2:
|
|
|
|
|
masks = masks[None, :]
|
|
|
|
|
super().__init__(masks, orig_shape)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def segments(self):
|
|
|
|
|
"""Return segments (normalized). Deprecated; use xyn property instead."""
|
|
|
|
|
LOGGER.warning(
|
|
|
|
|
"WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and 'Masks.xy' for segments (pixels) instead."
|
|
|
|
|
)
|
|
|
|
|
return self.xyn
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xyn(self):
|
|
|
|
|
"""Return normalized segments."""
|
|
|
|
|
return [
|
|
|
|
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
|
|
|
|
|
for x in ops.masks2segments(self.data)]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xy(self):
|
|
|
|
|
"""Return segments in pixel coordinates."""
|
|
|
|
|
return [
|
|
|
|
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
|
|
|
|
|
for x in ops.masks2segments(self.data)]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def masks(self):
|
|
|
|
|
"""Return the raw masks tensor. Deprecated; use data attribute instead."""
|
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.")
|
|
|
|
|
return self.data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Keypoints(BaseTensor):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating detection keypoints.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
|
|
|
|
|
xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
|
|
|
|
|
conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Returns a copy of the keypoints tensor on CPU memory.
|
|
|
|
|
numpy(): Returns a copy of the keypoints tensor as a numpy array.
|
|
|
|
|
cuda(): Returns a copy of the keypoints tensor on GPU memory.
|
|
|
|
|
to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, keypoints, orig_shape) -> None:
|
|
|
|
|
"""Initializes the Keypoints object with detection keypoints and original image size."""
|
|
|
|
|
if keypoints.ndim == 2:
|
|
|
|
|
keypoints = keypoints[None, :]
|
|
|
|
|
super().__init__(keypoints, orig_shape)
|
|
|
|
|
self.has_visible = self.data.shape[-1] == 3
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xy(self):
|
|
|
|
|
"""Returns x, y coordinates of keypoints."""
|
|
|
|
|
return self.data[..., :2]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def xyn(self):
|
|
|
|
|
"""Returns normalized x, y coordinates of keypoints."""
|
|
|
|
|
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
|
|
|
|
|
xy[..., 0] /= self.orig_shape[1]
|
|
|
|
|
xy[..., 1] /= self.orig_shape[0]
|
|
|
|
|
return xy
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def conf(self):
|
|
|
|
|
"""Returns confidence values of keypoints if available, else None."""
|
|
|
|
|
return self.data[..., 2] if self.has_visible else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Probs(BaseTensor):
|
|
|
|
|
"""
|
|
|
|
|
A class for storing and manipulating classification predictions.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
top1 (int): Index of the top 1 class.
|
|
|
|
|
top5 (list[int]): Indices of the top 5 classes.
|
|
|
|
|
top1conf (torch.Tensor): Confidence of the top 1 class.
|
|
|
|
|
top5conf (torch.Tensor): Confidences of the top 5 classes.
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
|
cpu(): Returns a copy of the probs tensor on CPU memory.
|
|
|
|
|
numpy(): Returns a copy of the probs tensor as a numpy array.
|
|
|
|
|
cuda(): Returns a copy of the probs tensor on GPU memory.
|
|
|
|
|
to(): Returns a copy of the probs tensor with the specified device and dtype.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, probs, orig_shape=None) -> None:
|
|
|
|
|
super().__init__(probs, orig_shape)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top1(self):
|
|
|
|
|
"""Return the index of top 1."""
|
|
|
|
|
return int(self.data.argmax())
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top5(self):
|
|
|
|
|
"""Return the indices of top 5."""
|
|
|
|
|
return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy.
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top1conf(self):
|
|
|
|
|
"""Return the confidence of top 1."""
|
|
|
|
|
return self.data[self.top1]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def top5conf(self):
|
|
|
|
|
"""Return the confidences of top 5."""
|
|
|
|
|
return self.data[self.top5]
|