|
|
|
import hydra
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.data import build_classification_dataloader
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
|
|
|
from ultralytics.yolo.engine.validator import BaseValidator
|
|
|
|
|
|
|
|
|
|
|
|
class ClassificationValidator(BaseValidator):
|
|
|
|
|
|
|
|
def init_metrics(self, model):
|
|
|
|
self.correct = torch.tensor([], device=next(model.parameters()).device)
|
|
|
|
|
|
|
|
def preprocess(self, batch):
|
|
|
|
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
|
|
|
batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()
|
|
|
|
batch["cls"] = batch["cls"].to(self.device)
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def update_metrics(self, preds, batch):
|
|
|
|
targets = batch["cls"]
|
|
|
|
correct_in_batch = (targets[:, None] == preds).float()
|
|
|
|
self.correct = torch.cat((self.correct, correct_in_batch))
|
|
|
|
|
|
|
|
def get_stats(self):
|
|
|
|
acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy
|
|
|
|
top1, top5 = acc.mean(0).tolist()
|
|
|
|
return {"top1": top1, "top5": top5, "fitness": top5}
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size):
|
|
|
|
return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def metric_keys(self):
|
|
|
|
return ["top1", "top5"]
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
|
def val(cfg):
|
|
|
|
cfg.data = cfg.data or "imagenette160"
|
|
|
|
cfg.model = cfg.model or "resnet18"
|
|
|
|
validator = ClassificationValidator(args=cfg)
|
|
|
|
validator(model=cfg.model)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
val()
|