|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
import hydra
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.data import build_dataloader
|
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
|
|
|
|
from ultralytics.yolo.engine.validator import BaseValidator
|
|
|
|
|
from ultralytics.yolo.utils import ops
|
|
|
|
|
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
|
|
|
|
from ultralytics.yolo.utils.files import yaml_load
|
|
|
|
|
from ultralytics.yolo.utils.metrics import (ConfusionMatrix, Metrics, ap_per_class_box_and_mask, box_iou,
|
|
|
|
|
fitness_segmentation, mask_iou)
|
|
|
|
|
from ultralytics.yolo.utils.plotting import output_to_target, plot_images_and_masks
|
|
|
|
|
from ultralytics.yolo.utils.torch_utils import de_parallel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SegmentationValidator(BaseValidator):
|
|
|
|
|
|
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
|
|
|
|
|
super().__init__(dataloader, save_dir, pbar, logger, args)
|
|
|
|
|
if self.args.save_json:
|
|
|
|
|
check_requirements(['pycocotools'])
|
|
|
|
|
self.process = ops.process_mask_upsample # more accurate
|
|
|
|
|
else:
|
|
|
|
|
self.process = ops.process_mask # faster
|
|
|
|
|
self.data_dict = yaml_load(check_file(self.args.data)) if self.args.data else None
|
|
|
|
|
self.is_coco = False
|
|
|
|
|
self.class_map = None
|
|
|
|
|
self.targets = None
|
|
|
|
|
|
|
|
|
|
def preprocess(self, batch):
|
|
|
|
|
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
|
|
|
|
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
|
|
|
|
|
batch["masks"] = batch["masks"].to(self.device).float()
|
|
|
|
|
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width
|
|
|
|
|
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
|
|
|
self.targets = self.targets.to(self.device)
|
|
|
|
|
height, width = batch["img"].shape[2:]
|
|
|
|
|
self.targets[:, 2:] *= torch.tensor((width, height, width, height), device=self.device) # to pixels
|
|
|
|
|
self.lb = [self.targets[self.targets[:, 0] == i, 1:]
|
|
|
|
|
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling
|
|
|
|
|
|
|
|
|
|
return batch
|
|
|
|
|
|
|
|
|
|
def init_metrics(self, model):
|
|
|
|
|
if self.training:
|
|
|
|
|
head = de_parallel(model).model[-1]
|
|
|
|
|
else:
|
|
|
|
|
head = de_parallel(model).model.model[-1]
|
|
|
|
|
|
|
|
|
|
if self.data:
|
|
|
|
|
self.is_coco = isinstance(self.data.get('val'),
|
|
|
|
|
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
|
|
|
|
|
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
|
|
|
|
self.nm = head.nm if hasattr(head, "nm") else 32
|
|
|
|
|
self.nc = head.nc
|
|
|
|
|
self.names = model.names
|
|
|
|
|
if isinstance(self.names, (list, tuple)): # old format
|
|
|
|
|
self.names = dict(enumerate(self.names))
|
|
|
|
|
|
|
|
|
|
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
|
|
|
|
|
self.niou = self.iouv.numel()
|
|
|
|
|
self.seen = 0
|
|
|
|
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
|
|
|
|
self.metrics = Metrics()
|
|
|
|
|
self.loss = torch.zeros(4, device=self.device)
|
|
|
|
|
self.jdict = []
|
|
|
|
|
self.stats = []
|
|
|
|
|
self.plot_masks = []
|
|
|
|
|
|
|
|
|
|
def get_desc(self):
|
|
|
|
|
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P",
|
|
|
|
|
"R", "mAP50", "mAP50-95)")
|
|
|
|
|
|
|
|
|
|
def postprocess(self, preds):
|
|
|
|
|
p = ops.non_max_suppression(preds[0],
|
|
|
|
|
self.args.conf_thres,
|
|
|
|
|
self.args.iou_thres,
|
|
|
|
|
labels=self.lb,
|
|
|
|
|
multi_label=True,
|
|
|
|
|
agnostic=self.args.single_cls,
|
|
|
|
|
max_det=self.args.max_det,
|
|
|
|
|
nm=self.nm)
|
|
|
|
|
return (p, preds[1], preds[2])
|
|
|
|
|
|
|
|
|
|
def update_metrics(self, preds, batch):
|
|
|
|
|
# Metrics
|
|
|
|
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
|
|
|
|
labels = self.targets[self.targets[:, 0] == si, 1:]
|
|
|
|
|
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
|
|
|
|
shape = batch["ori_shape"][si]
|
|
|
|
|
# path = batch["shape"][si][0]
|
|
|
|
|
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
|
|
|
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
|
|
|
|
self.seen += 1
|
|
|
|
|
|
|
|
|
|
if npr == 0:
|
|
|
|
|
if nl:
|
|
|
|
|
self.stats.append((correct_masks, correct_bboxes, *torch.zeros(
|
|
|
|
|
(2, 0), device=self.device), labels[:, 0]))
|
|
|
|
|
if self.args.plots:
|
|
|
|
|
self.confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# Masks
|
|
|
|
|
midx = [si] if self.args.overlap_mask else self.targets[:, 0] == si
|
|
|
|
|
gt_masks = batch["masks"][midx]
|
|
|
|
|
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch["img"][si].shape[1:])
|
|
|
|
|
|
|
|
|
|
# Predictions
|
|
|
|
|
if self.args.single_cls:
|
|
|
|
|
pred[:, 5] = 0
|
|
|
|
|
predn = pred.clone()
|
|
|
|
|
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape) # native-space pred
|
|
|
|
|
|
|
|
|
|
# Evaluate
|
|
|
|
|
if nl:
|
|
|
|
|
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
|
|
|
|
|
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels
|
|
|
|
|
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
|
|
|
|
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
|
|
|
|
|
# TODO: maybe remove these `self.` arguments as they already are member variable
|
|
|
|
|
correct_masks = self._process_batch(predn,
|
|
|
|
|
labelsn,
|
|
|
|
|
self.iouv,
|
|
|
|
|
pred_masks,
|
|
|
|
|
gt_masks,
|
|
|
|
|
overlap=self.args.overlap_mask,
|
|
|
|
|
masks=True)
|
|
|
|
|
if self.args.plots:
|
|
|
|
|
self.confusion_matrix.process_batch(predn, labelsn)
|
|
|
|
|
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:,
|
|
|
|
|
0])) # (conf, pcls, tcls)
|
|
|
|
|
|
|
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
|
|
|
|
if self.args.plots and self.batch_i < 3:
|
|
|
|
|
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
|
|
|
|
|
|
|
|
|
|
# TODO: Save/log
|
|
|
|
|
'''
|
|
|
|
|
if self.args.save_txt:
|
|
|
|
|
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
|
|
|
|
if self.args.save_json:
|
|
|
|
|
pred_masks = scale_image(im[si].shape[1:],
|
|
|
|
|
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
|
|
|
|
|
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
|
|
|
|
|
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
def get_stats(self):
|
|
|
|
|
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
|
|
|
|
if len(stats) and stats[0].any():
|
|
|
|
|
results = ap_per_class_box_and_mask(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names)
|
|
|
|
|
self.metrics.update(results)
|
|
|
|
|
self.nt_per_class = np.bincount(stats[4].astype(int), minlength=self.nc) # number of targets per class
|
|
|
|
|
metrics = {"fitness": fitness_segmentation(np.array(self.metrics.mean_results()).reshape(1, -1))}
|
|
|
|
|
metrics |= zip(self.metric_keys, self.metrics.mean_results())
|
|
|
|
|
return metrics
|
|
|
|
|
|
|
|
|
|
def print_results(self):
|
|
|
|
|
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
|
|
|
|
|
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
|
|
|
|
if self.nt_per_class.sum() == 0:
|
|
|
|
|
self.logger.warning(
|
|
|
|
|
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
|
|
|
|
|
|
|
|
|
|
# Print results per class
|
|
|
|
|
if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats):
|
|
|
|
|
for i, c in enumerate(self.metrics.ap_class_index):
|
|
|
|
|
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
|
|
|
|
|
|
|
|
|
|
if self.args.plots:
|
|
|
|
|
self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values()))
|
|
|
|
|
|
|
|
|
|
def _process_batch(self, detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
|
|
|
|
"""
|
|
|
|
|
Return correct prediction matrix
|
|
|
|
|
Arguments:
|
|
|
|
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
|
|
|
|
labels (array[M, 5]), class, x1, y1, x2, y2
|
|
|
|
|
Returns:
|
|
|
|
|
correct (array[N, 10]), for 10 IoU levels
|
|
|
|
|
"""
|
|
|
|
|
if masks:
|
|
|
|
|
if overlap:
|
|
|
|
|
nl = len(labels)
|
|
|
|
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
|
|
|
|
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
|
|
|
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
|
|
|
|
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
|
|
|
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
|
|
|
|
gt_masks = gt_masks.gt_(0.5)
|
|
|
|
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
|
|
|
|
else: # boxes
|
|
|
|
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
|
|
|
|
|
|
|
|
|
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
|
|
|
|
correct_class = labels[:, 0:1] == detections[:, 5]
|
|
|
|
|
for i in range(len(iouv)):
|
|
|
|
|
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
|
|
|
|
if x[0].shape[0]:
|
|
|
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
|
|
|
|
|
1).cpu().numpy() # [label, detect, iou]
|
|
|
|
|
if x[0].shape[0] > 1:
|
|
|
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
|
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
|
|
|
# matches = matches[matches[:, 2].argsort()[::-1]]
|
|
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
|
|
|
correct[matches[:, 1].astype(int), i] = True
|
|
|
|
|
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
|
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size):
|
|
|
|
|
# TODO: manage splits differently
|
|
|
|
|
# calculate stride - check if model is initialized
|
|
|
|
|
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
|
|
|
|
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def metric_keys(self):
|
|
|
|
|
return [
|
|
|
|
|
"metrics/precision(B)",
|
|
|
|
|
"metrics/recall(B)",
|
|
|
|
|
"metrics/mAP_0.5(B)",
|
|
|
|
|
"metrics/mAP_0.5:0.95(B)", # metrics
|
|
|
|
|
"metrics/precision(M)",
|
|
|
|
|
"metrics/recall(M)",
|
|
|
|
|
"metrics/mAP_0.5(M)",
|
|
|
|
|
"metrics/mAP_0.5:0.95(M)",]
|
|
|
|
|
|
|
|
|
|
def plot_val_samples(self, batch, ni):
|
|
|
|
|
images = batch["img"]
|
|
|
|
|
masks = batch["masks"]
|
|
|
|
|
cls = batch["cls"].squeeze(-1)
|
|
|
|
|
bboxes = batch["bboxes"]
|
|
|
|
|
paths = batch["im_file"]
|
|
|
|
|
batch_idx = batch["batch_idx"]
|
|
|
|
|
plot_images_and_masks(images,
|
|
|
|
|
batch_idx,
|
|
|
|
|
cls,
|
|
|
|
|
bboxes,
|
|
|
|
|
masks,
|
|
|
|
|
paths=paths,
|
|
|
|
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
|
|
|
|
names=self.names)
|
|
|
|
|
|
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
|
|
|
images = batch["img"]
|
|
|
|
|
paths = batch["im_file"]
|
|
|
|
|
if len(self.plot_masks):
|
|
|
|
|
plot_masks = torch.cat(self.plot_masks, dim=0)
|
|
|
|
|
batch_idx, cls, bboxes, conf = output_to_target(preds[0], max_det=15)
|
|
|
|
|
plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, conf, paths,
|
|
|
|
|
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
|
|
|
|
|
self.plot_masks.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
|
|
|
|
def val(cfg):
|
|
|
|
|
cfg.data = cfg.data or "coco128-seg.yaml"
|
|
|
|
|
validator = SegmentationValidator(args=cfg)
|
|
|
|
|
validator(model=cfg.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
val()
|