description: Исследуйте разнообразный спектр поддерживаемых Ultralytics моделей семейства YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS и RT-DETR. Начните работу с примерами использования как для CLI, так и для Python.
Добро пожаловать в документацию по моделям Ultralytics! Мы поддерживаем широкий спектр моделей, каждая из которых адаптирована для конкретных задач, таких как [обнаружение объектов](../tasks/detect.md), [сегментация на уровне инстанций](../tasks/segment.md), [классификация изображений](../tasks/classify.md), [оценка позы](../tasks/pose.md) и [слежение за несколькими объектами](../modes/track.md). Если вы заинтересованы в добавлении архитектуры своей модели в Ultralytics, ознакомьтесь с нашим [Руководством для участников](../../help/contributing.md).
1.**[YOLOv3](yolov3.md)**: Третье поколение семейства моделей YOLO, авторства Джозефа Редмона, известное своей эффективностью в реальном времени для обнаружения объектов.
2.**[YOLOv4](yolov4.md)**: Нативное для darknet обновление YOLOv3, выпущенное Алексеем Бочковским в 2020 году.
3.**[YOLOv5](yolov5.md)**: Улучшенная версия архитектуры YOLO от Ultralytics, предлагающая лучшие компромиссы производительности и скорости по сравнению с предыдущими версиями.
4.**[YOLOv6](yolov6.md)**: Выпущенная в 2022 году компанией [Meituan](https://about.meituan.com/) и используемая во многих роботах автономной доставки компании.
5.**[YOLOv7](yolov7.md)**: Обновленные модели YOLO, выпущенные в 2022 году авторами YOLOv4.
6.**[YOLOv8](yolov8.md) НОВИНКА 🚀**: Последняя версия семейства YOLO, обладающая расширенными возможностями, такими как сегментация на уровне инстанций, оценка позы/ключевых точек и классификация.
7.**[Segment Anything Model (SAM)](sam.md)**: Модель сегментации всего и вся (SAM) от Meta.
8.**[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: MobileSAM для мобильных приложений от университета Kyung Hee.
9.**[Fast Segment Anything Model (FastSAM)](fast-sam.md)**: FastSAM от Группы анализа изображений и видео, Института автоматики, Китайской академии наук.
10.**[YOLO-NAS](yolo-nas.md)**: Модели нейронной архитектуры поиска YOLO (NAS).
11.**[Realtime Detection Transformers (RT-DETR)](rtdetr.md)**: Модели трансформеров реального времени для обнаружения объектов (RT-DETR) от Baidu PaddlePaddle.
Этот пример предоставляет простые примеры обучения и вывода для YOLO. Полная документация по этим и другим [режимам](../modes/index.md) представлена на страницах документации [Predict](../modes/predict.md), [Train](../modes/train.md), [Val](../modes/val.md) и [Export](../modes/export.md).
Обратите внимание, что ниже приведен пример для моделей [Detect](../tasks/detect.md) YOLOv8 для обнаружения объектов. Для дополнительных поддерживаемых задач смотрите документацию по [Segment](../tasks/segment.md), [Classify](../tasks/classify.md) и [Pose](../tasks/pose.md).
Предобученные модели PyTorch `*.pt`, а также конфигурационные файлы `*.yaml` могут быть переданы в классы `YOLO()`, `SAM()`, `NAS()` и `RTDETR()`, чтобы создать экземпляр модели на Python:
3.**Реализуйте свою Модель**: Добавьте вашу модель, следуя стандартам программирования и руководящим принципам, указанным в нашем [Руководстве для участников](../../help/contributing.md).