|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
|
|
|
from ultralytics.yolo.engine.results import Results
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT
|
|
|
|
|
|
|
|
|
|
|
|
class ClassificationPredictor(BasePredictor):
|
|
|
|
|
|
|
|
def preprocess(self, img):
|
|
|
|
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
|
|
|
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
|
|
|
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
|
|
results = []
|
|
|
|
for i, pred in enumerate(preds):
|
|
|
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
|
|
|
path, _, _, _, _ = self.batch
|
|
|
|
img_path = path[i] if isinstance(path, list) else path
|
|
|
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
def predict(cfg=DEFAULT_CFG, use_python=False):
|
|
|
|
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
|
|
|
|
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
|
|
|
|
else 'https://ultralytics.com/images/bus.jpg'
|
|
|
|
|
|
|
|
args = dict(model=model, source=source)
|
|
|
|
if use_python:
|
|
|
|
from ultralytics import YOLO
|
|
|
|
YOLO(model)(**args)
|
|
|
|
else:
|
|
|
|
predictor = ClassificationPredictor(overrides=args)
|
|
|
|
predictor.predict_cli()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
predict()
|