You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.7 KiB
74 lines
2.7 KiB
2 years ago
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||
|
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||
2 years ago
|
# Example usage: yolo train data=Argoverse.yaml
|
||
2 years ago
|
# parent
|
||
|
# ├── yolov5
|
||
|
# └── datasets
|
||
|
# └── Argoverse ← downloads here (31.3 GB)
|
||
|
|
||
|
|
||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||
|
path: ../datasets/Argoverse # dataset root dir
|
||
|
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||
|
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||
|
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||
|
|
||
|
# Classes
|
||
|
names:
|
||
|
0: person
|
||
|
1: bicycle
|
||
|
2: car
|
||
|
3: motorcycle
|
||
|
4: bus
|
||
|
5: truck
|
||
|
6: traffic_light
|
||
|
7: stop_sign
|
||
|
|
||
|
|
||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||
|
download: |
|
||
|
import json
|
||
|
from tqdm import tqdm
|
||
2 years ago
|
from ultralytics.yolo.utils.downloads import download
|
||
|
from pathlib import Path
|
||
2 years ago
|
|
||
|
def argoverse2yolo(set):
|
||
|
labels = {}
|
||
|
a = json.load(open(set, "rb"))
|
||
|
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
|
||
|
img_id = annot['image_id']
|
||
|
img_name = a['images'][img_id]['name']
|
||
|
img_label_name = f'{img_name[:-3]}txt'
|
||
|
|
||
|
cls = annot['category_id'] # instance class id
|
||
|
x_center, y_center, width, height = annot['bbox']
|
||
|
x_center = (x_center + width / 2) / 1920.0 # offset and scale
|
||
|
y_center = (y_center + height / 2) / 1200.0 # offset and scale
|
||
|
width /= 1920.0 # scale
|
||
|
height /= 1200.0 # scale
|
||
|
|
||
|
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
|
||
|
if not img_dir.exists():
|
||
|
img_dir.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
k = str(img_dir / img_label_name)
|
||
|
if k not in labels:
|
||
|
labels[k] = []
|
||
|
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
|
||
|
|
||
|
for k in labels:
|
||
|
with open(k, "w") as f:
|
||
|
f.writelines(labels[k])
|
||
|
|
||
|
|
||
|
# Download
|
||
|
dir = Path(yaml['path']) # dataset root dir
|
||
|
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
|
||
2 years ago
|
download(urls, dir=dir)
|
||
2 years ago
|
|
||
|
# Convert
|
||
|
annotations_dir = 'Argoverse-HD/annotations/'
|
||
|
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
|
||
|
for d in "train.json", "val.json":
|
||
|
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
|