description: Изучение различных методов установки Ultralytics с использованием pip, conda, git и Docker. Освоение работы с Ultralytics через интерфейс командной строки или в рамках ваших проектов на Python.
keywords: установка Ultralytics, установка pip Ultralytics, установка Docker Ultralytics, интерфейс командной строки Ultralytics, Python интерфейс Ultralytics
---
## Установка Ultralytics
Ultralytics предлагает различные методы установки, включая pip, conda и Docker. Установите YOLOv8 через пакет `ultralytics` pip для последнего стабильного выпуска или путем клонирования [репозитория Ultralytics на GitHub](https://github.com/ultralytics/ultralytics) для получения самой актуальной версии. Docker можно использовать для выполнения пакета в изолированном контейнере, избегая локальной установки.
Установите пакет `ultralytics` с помощью pip или обновите существующую установку, запустив `pip install -U ultralytics`. Посетите индекс пакетов Python (PyPI) для получения дополнительной информации о пакете `ultralytics`: [https://pypi.org/project/ultralytics/](https://pypi.org/project/ultralytics/).
Вы также можете установить пакет `ultralytics` напрямую из [репозитория на GitHub](https://github.com/ultralytics/ultralytics). Это может быть полезно, если вы хотите получить последнюю версию для разработки. Убедитесь, что в вашей системе установлен инструмент командной строки Git. Команда `@main` устанавливает ветку `main`, которую можно изменить на другую, к примеру, `@my-branch`, или удалить полностью, чтобы по умолчанию использовалась ветка `main`.
Conda - это альтернативный менеджер пакетов для pip, который также может быть использован для установки. Посетите Anaconda для получения дополнительной информации: [https://anaconda.org/conda-forge/ultralytics](https://anaconda.org/conda-forge/ultralytics). Репозиторий для обновления conda пакета Ultralytics находится здесь: [https://github.com/conda-forge/ultralytics-feedstock/](https://github.com/conda-forge/ultralytics-feedstock/).
Если вы устанавливаете пакет в среде CUDA, лучшей практикой будет установка `ultralytics`, `pytorch` и `pytorch-cuda` одной командой, чтобы менеджер пакетов conda мог разрешить любые конфликты или установить `pytorch-cuda` последним, чтобы при необходимости он мог заменить пакет `pytorch`, предназначенный для ЦП.
Образы Conda Ultralytics также доступны на [DockerHub](https://hub.docker.com/r/ultralytics/ultralytics). Эти образы основаны на [Miniconda3](https://docs.conda.io/projects/miniconda/en/latest/) и являются простым способом начать использовать `ultralytics` в среде Conda.
```bash
# Установка имени образа в переменную
t=ultralytics/ultralytics:latest-conda
# Скачивание последнего образа ultralytics с Docker Hub
sudo docker pull $t
# Запуск образа ultralytics в контейнере с поддержкой GPU
sudo docker run -it --ipc=host --gpus all $t # все GPU
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t # выбор GPU
```
=== "Клонирование Git"
Клонируйте репозиторий `ultralytics`, если вы заинтересованы в участии в разработке или хотите экспериментировать с последним исходным кодом. После клонирования перейдите в каталог и установите пакет в режиме редактирования `-e` с помощью pip.
# Установка пакета в режиме редактирования для разработки
pip install -e .
```
Смотрите файл [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) `ultralytics` для списка зависимостей. Обратите внимание, что все приведенные выше примеры устанавливают все необходимые зависимости.
Требования PyTorch зависят от операционной системы и требований CUDA, поэтому рекомендуется сначала установить PyTorch, следуя инструкциям на [https://pytorch.org/get-started/locally](https://pytorch.org/get-started/locally).
<imgwidth="800"alt="Инструкции по установке PyTorch"src="https://user-images.githubusercontent.com/26833433/228650108-ab0ec98a-b328-4f40-a40d-95355e8a84e3.png">
Интерфейс командной строки (CLI) Ultralytics позволяет выполнять простые команды одной строкой без необходимости настройки Python среды. CLI не требует настройки или кода на Python. Все задачи можно легко выполнить из терминала с помощью команды `yolo`. Прочтите [Руководство по CLI](/../usage/cli.md), чтобы узнать больше о использовании YOLOv8 из командной строки.
Аргументы должны передаваться в виде пар `arg=val`, разделенных знаком равенства `=`, и разделены пробелами ` ` между парами. Не используйте префиксы аргументов `--` или запятые `,` между аргументами.
Python интерфейс YOLOv8 позволяет легко интегрировать его в ваши Python проекты, упрощая загрузку, выполнение и обработку результатов работы модели. Интерфейс Python разработан с акцентом на простоту и удобство использования, позволяя пользователям быстро внедрять функции обнаружения объектов, сегментации и классификации в их проектах. Это делает интерфейс Python YOLOv8 незаменимым инструментом для тех, кто хочет включить эти функции в свои Python проекты.
Например, пользователи могут загрузить модель, обучить ее, оценить ее производительность на валидационном наборе, и даже экспортировать ее в формат ONNX всего за несколько строк кода. Подробнее о том, как использовать YOLOv8 в ваших Python проектах, читайте в [Руководстве по Python](/../usage/python.md).