---
comments: true
description: Learn how to profile speed and accuracy of YOLOv8 across various export formats; get insights on mAP50-95, accuracy_top5 metrics, and more.
keywords: Ultralytics, YOLOv8, benchmarking, speed profiling, accuracy profiling, mAP50-95, accuracy_top5, ONNX, OpenVINO, TensorRT, YOLO export formats
---
# Model Benchmarking with Ultralytics YOLO
< img width = "1024" src = "https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt = "Ultralytics YOLO ecosystem and integrations" >
## Introduction
Once your model is trained and validated, the next logical step is to evaluate its performance in various real-world scenarios. Benchmark mode in Ultralytics YOLOv8 serves this purpose by providing a robust framework for assessing the speed and accuracy of your model across a range of export formats.
< p align = "center" >
< br >
< iframe width = "720" height = "405" src = "https://www.youtube.com/embed/j8uQc0qB91s?start=105"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
< / iframe >
< br >
< strong > Watch:< / strong > Ultralytics Modes Tutorial: Benchmark
< / p >
## Why Is Benchmarking Crucial?
- **Informed Decisions:** Gain insights into the trade-offs between speed and accuracy.
- **Resource Allocation:** Understand how different export formats perform on different hardware.
- **Optimization:** Learn which export format offers the best performance for your specific use case.
- **Cost Efficiency:** Make more efficient use of hardware resources based on benchmark results.
### Key Metrics in Benchmark Mode
- **mAP50-95:** For object detection, segmentation, and pose estimation.
- **accuracy_top5:** For image classification.
- **Inference Time:** Time taken for each image in milliseconds.
### Supported Export Formats
- **ONNX:** For optimal CPU performance
- **TensorRT:** For maximal GPU efficiency
- **OpenVINO:** For Intel hardware optimization
- **CoreML, TensorFlow SavedModel, and More:** For diverse deployment needs.
!!! Tip "Tip"
* Export to ONNX or OpenVINO for up to 3x CPU speedup.
* Export to TensorRT for up to 5x GPU speedup.
## Usage Examples
Run YOLOv8n benchmarks on all supported export formats including ONNX, TensorRT etc. See Arguments section below for a full list of export arguments.
!!! Example
=== "Python"
```python
from ultralytics.utils.benchmarks import benchmark
# Benchmark on GPU
benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0)
```
=== "CLI"
```bash
yolo benchmark model=yolov8n.pt data='coco8.yaml' imgsz=640 half=False device=0
```
## Arguments
Arguments such as `model` , `data` , `imgsz` , `half` , `device` , and `verbose` provide users with the flexibility to fine-tune the benchmarks to their specific needs and compare the performance of different export formats with ease.
| Key | Value | Description |
|-----------|---------|-----------------------------------------------------------------------|
| `model` | `None` | path to model file, i.e. yolov8n.pt, yolov8n.yaml |
| `data` | `None` | path to YAML referencing the benchmarking dataset (under `val` label) |
| `imgsz` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) |
| `half` | `False` | FP16 quantization |
| `int8` | `False` | INT8 quantization |
| `device` | `None` | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu |
| `verbose` | `False` | do not continue on error (bool), or val floor threshold (float) |
## Export Formats
Benchmarks will attempt to run automatically on all possible export formats below.
| Format | `format` Argument | Model | Metadata | Arguments |
|--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------|
| [PyTorch ](https://pytorch.org/ ) | - | `yolov8n.pt` | ✅ | - |
| [TorchScript ](https://pytorch.org/docs/stable/jit.html ) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz` , `optimize` |
| [ONNX ](https://onnx.ai/ ) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz` , `half` , `dynamic` , `simplify` , `opset` |
| [OpenVINO ](https://docs.openvino.ai/latest/index.html ) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz` , `half` , `int8` |
| [TensorRT ](https://developer.nvidia.com/tensorrt ) | `engine` | `yolov8n.engine` | ✅ | `imgsz` , `half` , `dynamic` , `simplify` , `workspace` |
| [CoreML ](https://github.com/apple/coremltools ) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz` , `half` , `int8` , `nms` |
| [TF SavedModel ](https://www.tensorflow.org/guide/saved_model ) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz` , `keras` , `int8` |
| [TF GraphDef ](https://www.tensorflow.org/api_docs/python/tf/Graph ) | `pb` | `yolov8n.pb` | ❌ | `imgsz` |
| [TF Lite ](https://www.tensorflow.org/lite ) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz` , `half` , `int8` |
| [TF Edge TPU ](https://coral.ai/docs/edgetpu/models-intro/ ) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js ](https://www.tensorflow.org/js ) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` , `half` , `int8` |
| [PaddlePaddle ](https://github.com/PaddlePaddle ) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
| [ncnn ](https://github.com/Tencent/ncnn ) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz` , `half` |
See full `export` details in the [Export ](https://docs.ultralytics.com/modes/export/ ) page.