|
|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
|
|
|
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
import clearml
|
|
|
|
|
from clearml import Task
|
|
|
|
|
|
|
|
|
|
assert clearml.__version__ # verify package is not directory
|
|
|
|
|
assert not TESTS_RUNNING # do not log pytest
|
|
|
|
|
except (ImportError, AssertionError):
|
|
|
|
|
clearml = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_images(imgs_dict, group='', step=0):
|
|
|
|
|
task = Task.current_task()
|
|
|
|
|
if task:
|
|
|
|
|
for k, v in imgs_dict.items():
|
|
|
|
|
task.get_logger().report_image(group, k, step, v)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer):
|
|
|
|
|
try:
|
|
|
|
|
task = Task.init(project_name=trainer.args.project or 'YOLOv8',
|
|
|
|
|
task_name=trainer.args.name,
|
|
|
|
|
tags=['YOLOv8'],
|
|
|
|
|
output_uri=True,
|
|
|
|
|
reuse_last_task_id=False,
|
|
|
|
|
auto_connect_frameworks={'pytorch': False})
|
|
|
|
|
task.connect(vars(trainer.args), name='General')
|
|
|
|
|
except Exception as e:
|
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_epoch_end(trainer):
|
|
|
|
|
if trainer.epoch == 1:
|
|
|
|
|
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic', trainer.epoch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer):
|
|
|
|
|
task = Task.current_task()
|
|
|
|
|
if task and trainer.epoch == 0:
|
|
|
|
|
model_info = {
|
|
|
|
|
'model/parameters': get_num_params(trainer.model),
|
|
|
|
|
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
|
|
|
|
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
|
|
|
|
task.connect(model_info, name='Model')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer):
|
|
|
|
|
task = Task.current_task()
|
|
|
|
|
if task:
|
|
|
|
|
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = {
|
|
|
|
|
'on_pretrain_routine_start': on_pretrain_routine_start,
|
|
|
|
|
'on_train_epoch_end': on_train_epoch_end,
|
|
|
|
|
'on_fit_epoch_end': on_fit_epoch_end,
|
|
|
|
|
'on_train_end': on_train_end} if clearml else {}
|