You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

222 lines
6.6 KiB

# YOLOv8-ONNXRuntime-Rust for All the Key YOLO Tasks
This repository provides a Rust demo for performing YOLOv8 tasks like `Classification`, `Segmentation`, `Detection` and `Pose Detection` using ONNXRuntime.
## Features
- Support `Classification`, `Segmentation`, `Detection`, `Pose(Keypoints)-Detection` tasks.
- Support `FP16` & `FP32` ONNX models.
- Support `CPU`, `CUDA` and `TensorRT` execution provider to accelerate computation.
- Support dynamic input shapes(`batch`, `width`, `height`).
## Installation
### 1. Install Rust
Please follow the Rust official installation. (https://www.rust-lang.org/tools/install)
### 2. Install ONNXRuntime
This repository use `ort` crate, which is ONNXRuntime wrapper for Rust. (https://docs.rs/ort/latest/ort/)
You can follow the instruction with `ort` doc or simply do this:
- step1: Download ONNXRuntime(https://github.com/microsoft/onnxruntime/releases)
- setp2: Set environment variable `PATH` for linking.
On ubuntu, You can do like this:
```
vim ~/.bashrc
# Add the path of ONNXRUntime lib
export LD_LIBRARY_PATH=/home/qweasd/Documents/onnxruntime-linux-x64-gpu-1.16.3/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc
```
### 3. \[Optional\] Install CUDA & CuDNN & TensorRT
- CUDA execution provider requires CUDA v11.6+.
- TensorRT execution provider requires CUDA v11.4+ and TensorRT v8.4+.
## Get Started
### 1. Export the YOLOv8 ONNX Models
```bash
pip install -U ultralytics
# export onnx model with dynamic shapes
yolo export model=yolov8m.pt format=onnx simplify dynamic
yolo export model=yolov8m-cls.pt format=onnx simplify dynamic
yolo export model=yolov8m-pose.pt format=onnx simplify dynamic
yolo export model=yolov8m-seg.pt format=onnx simplify dynamic
# export onnx model with constant shapes
yolo export model=yolov8m.pt format=onnx simplify
yolo export model=yolov8m-cls.pt format=onnx simplify
yolo export model=yolov8m-pose.pt format=onnx simplify
yolo export model=yolov8m-seg.pt format=onnx simplify
```
### 2. Run Inference
It will perform inference with the ONNX model on the source image.
```
cargo run --release -- --model <MODEL> --source <SOURCE>
```
Set `--cuda` to use CUDA execution provider to speed up inference.
```
cargo run --release -- --cuda --model <MODEL> --source <SOURCE>
```
Set `--trt` to use TensorRT execution provider, and you can set `--fp16` at the same time to use TensorRT FP16 engine.
```
cargo run --release -- --trt --fp16 --model <MODEL> --source <SOURCE>
```
Set `--device_id` to select which device to run. When you have only one GPU, and you set `device_id` to 1 will not cause program panic, the `ort` would automatically fall back to `CPU` EP.
```
cargo run --release -- --cuda --device_id 0 --model <MODEL> --source <SOURCE>
```
Set `--batch` to do multi-batch-size inference.
If you're using `--trt`, you can also set `--batch-min` and `--batch-max` to explicitly specify min/max/opt batch for dynamic batch input.(https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#explicit-shape-range-for-dynamic-shape-input).(Note that the ONNX model should exported with dynamic shapes)
```
cargo run --release -- --cuda --batch 2 --model <MODEL> --source <SOURCE>
```
Set `--height` and `--width` to do dynamic image size inference. (Note that the ONNX model should exported with dynamic shapes)
```
cargo run --release -- --cuda --width 480 --height 640 --model <MODEL> --source <SOURCE>
```
Set `--profile` to check time consumed in each stage.(Note that the model usually needs to take 1~3 times dry run to warmup. Make sure to run enough times to evaluate the result.)
```
cargo run --release -- --trt --fp16 --profile --model <MODEL> --source <SOURCE>
```
Results: (yolov8m.onnx, batch=1, 3 times, trt, fp16, RTX 3060Ti)
```
==> 0
[Model Preprocess]: 12.75788ms
[ORT H2D]: 237.118µs
[ORT Inference]: 507.895469ms
[ORT D2H]: 191.655µs
[Model Inference]: 508.34589ms
[Model Postprocess]: 1.061122ms
==> 1
[Model Preprocess]: 13.658655ms
[ORT H2D]: 209.975µs
[ORT Inference]: 5.12372ms
[ORT D2H]: 182.389µs
[Model Inference]: 5.530022ms
[Model Postprocess]: 1.04851ms
==> 2
[Model Preprocess]: 12.475332ms
[ORT H2D]: 246.127µs
[ORT Inference]: 5.048432ms
[ORT D2H]: 187.117µs
[Model Inference]: 5.493119ms
[Model Postprocess]: 1.040906ms
```
And also:
`--conf`: confidence threshold \[default: 0.3\]
`--iou`: iou threshold in NMS \[default: 0.45\]
`--kconf`: confidence threshold of keypoint \[default: 0.55\]
`--plot`: plot inference result with random RGB color and save
you can check out all CLI arguments by:
```
git clone https://github.com/ultralytics/ultralytics
cd ultralytics/examples/YOLOv8-ONNXRuntime-Rust
cargo run --release -- --help
```
## Examples
### Classification
Running dynamic shape ONNX model on `CPU` with image size `--height 224 --width 224`. Saving plotted image in `runs` directory.
```
cargo run --release -- --model ../assets/weights/yolov8m-cls-dyn.onnx --source ../assets/images/dog.jpg --height 224 --width 224 --plot --profile
```
You will see result like:
```
Summary:
> Task: Classify (Ultralytics 8.0.217)
> EP: Cpu
> Dtype: Float32
> Batch: 1 (Dynamic), Height: 224 (Dynamic), Width: 224 (Dynamic)
> nc: 1000 nk: 0, nm: 0, conf: 0.3, kconf: 0.55, iou: 0.45
[Model Preprocess]: 16.363477ms
[ORT H2D]: 50.722µs
[ORT Inference]: 16.295808ms
[ORT D2H]: 8.37µs
[Model Inference]: 16.367046ms
[Model Postprocess]: 3.527µs
[
YOLOResult {
Probs(top5): Some([(208, 0.6950566), (209, 0.13823675), (178, 0.04849795), (215, 0.019029364), (212, 0.016506357)]),
Bboxes: None,
Keypoints: None,
Masks: None,
},
]
```
![2023-11-25-22-02-02-156623351](https://github.com/jamjamjon/ultralytics/assets/51357717/ef75c2ae-c5ab-44cc-9d9e-e60b51e39662)
### Object Detection
Using `CUDA` EP and dynamic image size `--height 640 --width 480`
```
cargo run --release -- --cuda --model ../assets/weights/yolov8m-dynamic.onnx --source ../assets/images/bus.jpg --plot --height 640 --width 480
```
![det](https://github.com/jamjamjon/ultralytics/assets/51357717/5d89a19d-0c96-4a59-875c-defab6887a2c)
### Pose Detection
using `TensorRT` EP
```
cargo run --release -- --trt --model ../assets/weights/yolov8m-pose.onnx --source ../assets/images/bus.jpg --plot
```
![2023-11-25-22-31-45-127054025](https://github.com/jamjamjon/ultralytics/assets/51357717/157b5ba7-bfcf-47cf-bee7-68b62e0de1c4)
### Instance Segmentation
using `TensorRT` EP and FP16 model `--fp16`
```
cargo run --release -- --trt --fp16 --model ../assets/weights/yolov8m-seg.onnx --source ../assets/images/0172.jpg --plot
```
![seg](https://github.com/jamjamjon/ultralytics/assets/51357717/cf046f4f-9533-478a-adc7-4de22443a641)