You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
11 KiB
174 lines
11 KiB
2 years ago
|
---
|
||
|
comments: true
|
||
1 year ago
|
description: Learn about YOLOv8 Classify models for image classification. Get detailed information on List of Pretrained Models & how to Train, Validate, Predict & Export models.
|
||
|
keywords: Ultralytics, YOLOv8, Image Classification, Pretrained Models, YOLOv8n-cls, Training, Validation, Prediction, Model Export
|
||
2 years ago
|
---
|
||
|
|
||
1 year ago
|
# Image Classification
|
||
2 years ago
|
|
||
1 year ago
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418606-adf35c62-2e11-405d-84c6-b84e7d013804.png" alt="Image classification examples">
|
||
2 years ago
|
|
||
1 year ago
|
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of predefined classes.
|
||
|
|
||
|
The output of an image classifier is a single class label and a confidence score. Image classification is useful when you need to know only what class an image belongs to and don't need to know where objects of that class are located or what their exact shape is.
|
||
2 years ago
|
|
||
|
!!! tip "Tip"
|
||
|
|
||
1 year ago
|
YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
|
||
2 years ago
|
|
||
1 year ago
|
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||
2 years ago
|
|
||
1 year ago
|
YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||
2 years ago
|
|
||
1 year ago
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||
2 years ago
|
|
||
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||
|
|----------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|--------------------------------|-------------------------------------|--------------------|--------------------------|
|
||
|
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||
|
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||
|
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||
|
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
||
|
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||
|
|
||
|
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set.
|
||
|
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
||
|
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||
|
instance.
|
||
|
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
||
2 years ago
|
|
||
|
## Train
|
||
|
|
||
1 year ago
|
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||
2 years ago
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-cls.yaml') # build a new model from YAML
|
||
2 years ago
|
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||
2 years ago
|
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # build from YAML and transfer weights
|
||
1 year ago
|
|
||
2 years ago
|
# Train the model
|
||
1 year ago
|
results = model.train(data='mnist160', epochs=100, imgsz=64)
|
||
2 years ago
|
```
|
||
2 years ago
|
|
||
2 years ago
|
=== "CLI"
|
||
2 years ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
# Build a new model from YAML and start training from scratch
|
||
|
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
|
||
|
|
||
|
# Start training from a pretrained *.pt model
|
||
2 years ago
|
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
||
2 years ago
|
|
||
|
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||
|
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
|
||
2 years ago
|
```
|
||
|
|
||
2 years ago
|
### Dataset format
|
||
2 years ago
|
|
||
1 year ago
|
YOLO classification dataset format can be found in detail in the [Dataset Guide](../datasets/classify/index.md).
|
||
2 years ago
|
|
||
2 years ago
|
## Val
|
||
|
|
||
1 year ago
|
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
|
||
2 years ago
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-cls.pt') # load an official model
|
||
|
model = YOLO('path/to/best.pt') # load a custom model
|
||
1 year ago
|
|
||
2 years ago
|
# Validate the model
|
||
2 years ago
|
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||
|
metrics.top1 # top1 accuracy
|
||
|
metrics.top5 # top5 accuracy
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
yolo classify val model=yolov8n-cls.pt # val official model
|
||
|
yolo classify val model=path/to/best.pt # val custom model
|
||
2 years ago
|
```
|
||
|
|
||
|
## Predict
|
||
|
|
||
|
Use a trained YOLOv8n-cls model to run predictions on images.
|
||
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-cls.pt') # load an official model
|
||
|
model = YOLO('path/to/best.pt') # load a custom model
|
||
1 year ago
|
|
||
2 years ago
|
# Predict with the model
|
||
2 years ago
|
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||
|
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||
2 years ago
|
```
|
||
2 years ago
|
|
||
2 years ago
|
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
|
||
2 years ago
|
|
||
|
## Export
|
||
|
|
||
|
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
||
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
1 year ago
|
|
||
2 years ago
|
```python
|
||
|
from ultralytics import YOLO
|
||
1 year ago
|
|
||
2 years ago
|
# Load a model
|
||
2 years ago
|
model = YOLO('yolov8n-cls.pt') # load an official model
|
||
1 year ago
|
model = YOLO('path/to/best.pt') # load a custom trained model
|
||
1 year ago
|
|
||
2 years ago
|
# Export the model
|
||
2 years ago
|
model.export(format='onnx')
|
||
2 years ago
|
```
|
||
|
=== "CLI"
|
||
1 year ago
|
|
||
2 years ago
|
```bash
|
||
2 years ago
|
yolo export model=yolov8n-cls.pt format=onnx # export official model
|
||
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||
2 years ago
|
```
|
||
|
|
||
1 year ago
|
Available YOLOv8-cls export formats are in the table below. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your model after export completes.
|
||
2 years ago
|
|
||
2 years ago
|
| Format | `format` Argument | Model | Metadata | Arguments |
|
||
|
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------|
|
||
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ | - |
|
||
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ | `imgsz`, `optimize` |
|
||
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||
2 years ago
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ | `imgsz`, `half` |
|
||
2 years ago
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||
1 year ago
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||
2 years ago
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ | `imgsz`, `keras` |
|
||
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ | `imgsz` |
|
||
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` |
|
||
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` |
|
||
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` |
|
||
1 year ago
|
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-cls_ncnn_model/` | ✅ | `imgsz`, `half` |
|
||
2 years ago
|
|
||
1 year ago
|
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|