description: YOLOv8 모델을 ONNX, TensorRT, CoreML 등의 다양한 형식으로 내보내는 단계별 가이드를 확인해보세요. 이제 배포를 진행해보세요!.
keywords: YOLO, YOLOv8, Ultralytics, 모델 내보내기, ONNX, TensorRT, CoreML, TensorFlow SavedModel, OpenVINO, PyTorch, 모델 내보내기
---
# Ultralytics YOLO를 사용한 모델 내보내기
<imgwidth="1024"src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"alt="Ultralytics YOLO 생태계 및 통합">
## 소개
모델을 훈련하는 최종 목적은 실제 환경에서 배포하기 위함입니다. Ultralytics YOLOv8의 내보내기 모드는 훈련된 모델을 다양한 형식으로 내보내어 여러 플랫폼과 디바이스에서 배포할 수 있는 범용적인 옵션을 제공합니다. 이 포괄적인 가이드는 모델 내보내기의 미묘한 점들을 설명하고 최대의 호환성과 성능을 달성하는 방법을 안내하는 것을 목표로 합니다.
YOLOv8n 모델을 ONNX나 TensorRT와 같은 다른 형식으로 내보냅니다. 내보내기 인수에 대한 전체 목록은 아래 '인수' 섹션을 참조하세요.
!!! 예시 ""
=== "Python"
```python
from ultralytics import YOLO
# 모델을 불러오기
model = YOLO('yolov8n.pt') # 공식 모델을 불러오기
model = YOLO('path/to/best.pt') # 사용자 지정 훈련 모델을 불러오기
# 모델을 내보내기
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx # 공식 모델을 내보내기
yolo export model=path/to/best.pt format=onnx # 사용자 지정 훈련 모델을 내보내기
```
## 인수
YOLO 모델의 내보내기 설정은 다른 환경이나 플랫폼에서 모델을 사용하기 위해 저장 또는 내보내기할 때 사용하는 다양한 구성 및 옵션을 의미합니다. 이러한 설정은 모델의 성능, 크기 및 다양한 시스템과의 호환성에 영향을 미칠 수 있습니다. 일반적인 YOLO 내보내기 설정에는 내보낸 모델 파일의 형식(예: ONNX, TensorFlow SavedModel), 모델이 실행될 장치(예: CPU, GPU) 및 마스크 또는 상자당 여러 라벨과 같은 추가 기능의 포함 여부 등이 있습니다. 모델이 사용되는 특정 작업과 대상 환경 또는 플랫폼의 요구 사항이나 제약 사항에 따라 내보내기 과정에 영향을 미치는 다른 요소들도 있을 수 있습니다. 내보낸 모델이 의도한 용도로 최적화되어 있고 대상 환경에서 효과적으로 사용할 수 있도록 이러한 설정을 세심하게 고려하고 구성하는 것이 중요합니다.