description: Aprende a utilizar Ultralytics YOLOv8 para tareas de estimación de pose. Encuentra modelos preentrenados, aprende a entrenar, validar, predecir y exportar tus propios modelos.
keywords: Ultralytics, YOLO, YOLOv8, estimación de pose, detección de puntos clave, detección de objetos, modelos preentrenados, aprendizaje automático, inteligencia artificial
---
# Estimación de Pose
<imgwidth="1024"src="https://user-images.githubusercontent.com/26833433/243418616-9811ac0b-a4a7-452a-8aba-484ba32bb4a8.png"alt="Ejemplos de estimación de pose">
La estimación de pose es una tarea que implica identificar la ubicación de puntos específicos en una imagen, comúnmente referidos como puntos clave. Estos puntos clave pueden representar varias partes del objeto, como articulaciones, puntos de referencia u otras características distintivas. La ubicación de los puntos clave generalmente se representa como un conjunto de coordenadas 2D `[x, y]` o 3D `[x, y, visible]`.
La salida de un modelo de estimación de pose es un conjunto de puntos que representan los puntos clave en un objeto de la imagen, generalmente junto con las puntuaciones de confianza para cada punto. La estimación de pose es una buena opción cuando se necesita identificar partes específicas de un objeto en una escena y su ubicación relativa entre ellas.
Los modelos _pose_ YOLOv8 utilizan el sufijo `-pose`, por ejemplo, `yolov8n-pose.pt`. Estos modelos están entrenados en el conjunto de datos [COCO keypoints](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml) y son adecuados para una variedad de tareas de estimación de pose.
Aquí se muestran los modelos preentrenados de YOLOv8 Pose. Los modelos Detect, Segment y Pose están preentrenados en el conjunto de datos [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), mientras que los modelos Classify están preentrenados en el conjunto de datos [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
Los [modelos](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) se descargan automáticamente desde el último lanzamiento de Ultralytics [release](https://github.com/ultralytics/assets/releases) en el primer uso.
- Los valores de **mAP<sup>val</sup>** son para un solo modelo a una sola escala en el conjunto de datos [COCO Keypoints val2017](http://cocodataset.org).
<br>Reproducir con `yolo val pose data=coco-pose.yaml device=0`
- **Velocidad** promediada sobre imágenes COCO val usando una instancia [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/).
<br>Reproducir con `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu`
## Entrenar
Entrena un modelo YOLOv8-pose en el conjunto de datos COCO128-pose.
El formato del conjunto de datos de pose de YOLO se puede encontrar en detalle en la [Guía de Conjuntos de Datos](../../../datasets/pose/index.md). Para convertir tu conjunto de datos existente de otros formatos (como COCO, etc.) al formato de YOLO, usa la herramienta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) de Ultralytics.
Valida la precisión del modelo YOLOv8n-pose entrenado en el conjunto de datos COCO128-pose. No es necesario pasar ningún argumento ya que el `modelo` mantiene sus `datos` de entrenamiento y argumentos como atributos del modelo.
Los formatos de exportación de YOLOv8-pose disponibles se muestran en la tabla a continuación. Puedes predecir o validar directamente en modelos exportados, por ejemplo, `yolo predict model=yolov8n-pose.onnx`. Los ejemplos de uso se muestran para tu modelo después de que la exportación se completa.