|
|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
"""
|
|
|
|
|
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
|
|
|
|
|
|
|
|
|
Usage - sources:
|
|
|
|
|
$ yolo mode=predict model=yolov8n.pt source=0 # webcam
|
|
|
|
|
img.jpg # image
|
|
|
|
|
vid.mp4 # video
|
|
|
|
|
screen # screenshot
|
|
|
|
|
path/ # directory
|
|
|
|
|
list.txt # list of images
|
|
|
|
|
list.streams # list of streams
|
|
|
|
|
'path/*.jpg' # glob
|
|
|
|
|
'https://youtu.be/LNwODJXcvt4' # YouTube
|
|
|
|
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream
|
|
|
|
|
|
|
|
|
|
Usage - formats:
|
|
|
|
|
$ yolo mode=predict model=yolov8n.pt # PyTorch
|
|
|
|
|
yolov8n.torchscript # TorchScript
|
|
|
|
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
|
|
|
|
|
yolov8n_openvino_model # OpenVINO
|
|
|
|
|
yolov8n.engine # TensorRT
|
|
|
|
|
yolov8n.mlpackage # CoreML (macOS-only)
|
|
|
|
|
yolov8n_saved_model # TensorFlow SavedModel
|
|
|
|
|
yolov8n.pb # TensorFlow GraphDef
|
|
|
|
|
yolov8n.tflite # TensorFlow Lite
|
|
|
|
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
|
|
|
|
yolov8n_paddle_model # PaddlePaddle
|
|
|
|
|
"""
|
|
|
|
|
import platform
|
|
|
|
|
import threading
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
from ultralytics.cfg import get_cfg, get_save_dir
|
|
|
|
|
from ultralytics.data import load_inference_source
|
|
|
|
|
from ultralytics.data.augment import LetterBox, classify_transforms
|
|
|
|
|
from ultralytics.nn.autobackend import AutoBackend
|
|
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops
|
|
|
|
|
from ultralytics.utils.checks import check_imgsz, check_imshow
|
|
|
|
|
from ultralytics.utils.files import increment_path
|
|
|
|
|
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
|
|
|
|
|
|
|
|
|
|
STREAM_WARNING = """
|
|
|
|
|
WARNING ⚠️ inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory
|
|
|
|
|
errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help.
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
results = model(source=..., stream=True) # generator of Results objects
|
|
|
|
|
for r in results:
|
|
|
|
|
boxes = r.boxes # Boxes object for bbox outputs
|
|
|
|
|
masks = r.masks # Masks object for segment masks outputs
|
|
|
|
|
probs = r.probs # Class probabilities for classification outputs
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasePredictor:
|
|
|
|
|
"""
|
|
|
|
|
BasePredictor.
|
|
|
|
|
|
|
|
|
|
A base class for creating predictors.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
args (SimpleNamespace): Configuration for the predictor.
|
|
|
|
|
save_dir (Path): Directory to save results.
|
|
|
|
|
done_warmup (bool): Whether the predictor has finished setup.
|
|
|
|
|
model (nn.Module): Model used for prediction.
|
|
|
|
|
data (dict): Data configuration.
|
|
|
|
|
device (torch.device): Device used for prediction.
|
|
|
|
|
dataset (Dataset): Dataset used for prediction.
|
|
|
|
|
vid_path (str): Path to video file.
|
|
|
|
|
vid_writer (cv2.VideoWriter): Video writer for saving video output.
|
|
|
|
|
data_path (str): Path to data.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
|
|
|
"""
|
|
|
|
|
Initializes the BasePredictor class.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
|
|
|
|
|
overrides (dict, optional): Configuration overrides. Defaults to None.
|
|
|
|
|
"""
|
|
|
|
|
self.args = get_cfg(cfg, overrides)
|
|
|
|
|
self.save_dir = get_save_dir(self.args)
|
|
|
|
|
if self.args.conf is None:
|
|
|
|
|
self.args.conf = 0.25 # default conf=0.25
|
|
|
|
|
self.done_warmup = False
|
|
|
|
|
if self.args.show:
|
|
|
|
|
self.args.show = check_imshow(warn=True)
|
|
|
|
|
|
|
|
|
|
# Usable if setup is done
|
|
|
|
|
self.model = None
|
|
|
|
|
self.data = self.args.data # data_dict
|
|
|
|
|
self.imgsz = None
|
|
|
|
|
self.device = None
|
|
|
|
|
self.dataset = None
|
|
|
|
|
self.vid_path, self.vid_writer, self.vid_frame = None, None, None
|
|
|
|
|
self.plotted_img = None
|
|
|
|
|
self.data_path = None
|
|
|
|
|
self.source_type = None
|
|
|
|
|
self.batch = None
|
|
|
|
|
self.results = None
|
|
|
|
|
self.transforms = None
|
|
|
|
|
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
|
|
|
|
self.txt_path = None
|
|
|
|
|
self._lock = threading.Lock() # for automatic thread-safe inference
|
|
|
|
|
callbacks.add_integration_callbacks(self)
|
|
|
|
|
|
|
|
|
|
def preprocess(self, im):
|
|
|
|
|
"""
|
|
|
|
|
Prepares input image before inference.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
|
|
|
|
|
"""
|
|
|
|
|
not_tensor = not isinstance(im, torch.Tensor)
|
|
|
|
|
if not_tensor:
|
|
|
|
|
im = np.stack(self.pre_transform(im))
|
|
|
|
|
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
|
|
|
|
im = np.ascontiguousarray(im) # contiguous
|
|
|
|
|
im = torch.from_numpy(im)
|
|
|
|
|
|
|
|
|
|
im = im.to(self.device)
|
|
|
|
|
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
|
|
|
|
|
if not_tensor:
|
|
|
|
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
def inference(self, im, *args, **kwargs):
|
|
|
|
|
"""Runs inference on a given image using the specified model and arguments."""
|
|
|
|
|
visualize = (
|
|
|
|
|
increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True)
|
|
|
|
|
if self.args.visualize and (not self.source_type.tensor)
|
|
|
|
|
else False
|
|
|
|
|
)
|
|
|
|
|
return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
def pre_transform(self, im):
|
|
|
|
|
"""
|
|
|
|
|
Pre-transform input image before inference.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
(list): A list of transformed images.
|
|
|
|
|
"""
|
|
|
|
|
same_shapes = all(x.shape == im[0].shape for x in im)
|
|
|
|
|
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
|
|
|
|
|
return [letterbox(image=x) for x in im]
|
|
|
|
|
|
|
|
|
|
def write_results(self, idx, results, batch):
|
|
|
|
|
"""Write inference results to a file or directory."""
|
|
|
|
|
p, im, _ = batch
|
|
|
|
|
log_string = ""
|
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
|
im = im[None] # expand for batch dim
|
|
|
|
|
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
|
|
|
|
|
log_string += f"{idx}: "
|
|
|
|
|
frame = self.dataset.count
|
|
|
|
|
else:
|
|
|
|
|
frame = getattr(self.dataset, "frame", 0)
|
|
|
|
|
self.data_path = p
|
|
|
|
|
self.txt_path = str(self.save_dir / "labels" / p.stem) + ("" if self.dataset.mode == "image" else f"_{frame}")
|
|
|
|
|
log_string += "%gx%g " % im.shape[2:] # print string
|
|
|
|
|
result = results[idx]
|
|
|
|
|
log_string += result.verbose()
|
|
|
|
|
|
|
|
|
|
if self.args.save or self.args.show: # Add bbox to image
|
|
|
|
|
plot_args = {
|
|
|
|
|
"line_width": self.args.line_width,
|
|
|
|
|
"boxes": self.args.show_boxes,
|
|
|
|
|
"conf": self.args.show_conf,
|
|
|
|
|
"labels": self.args.show_labels,
|
|
|
|
|
}
|
|
|
|
|
if not self.args.retina_masks:
|
|
|
|
|
plot_args["im_gpu"] = im[idx]
|
|
|
|
|
self.plotted_img = result.plot(**plot_args)
|
|
|
|
|
# Write
|
|
|
|
|
if self.args.save_txt:
|
|
|
|
|
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
|
|
|
|
|
if self.args.save_crop:
|
|
|
|
|
result.save_crop(
|
|
|
|
|
save_dir=self.save_dir / "crops",
|
|
|
|
|
file_name=self.data_path.stem + ("" if self.dataset.mode == "image" else f"_{frame}"),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return log_string
|
|
|
|
|
|
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
|
|
|
"""Post-processes predictions for an image and returns them."""
|
|
|
|
|
return preds
|
|
|
|
|
|
|
|
|
|
def __call__(self, source=None, model=None, stream=False, *args, **kwargs):
|
|
|
|
|
"""Performs inference on an image or stream."""
|
|
|
|
|
self.stream = stream
|
|
|
|
|
if stream:
|
|
|
|
|
return self.stream_inference(source, model, *args, **kwargs)
|
|
|
|
|
else:
|
|
|
|
|
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
|
|
|
|
|
|
|
|
|
|
def predict_cli(self, source=None, model=None):
|
|
|
|
|
"""
|
|
|
|
|
Method used for CLI prediction.
|
|
|
|
|
|
|
|
|
|
It uses always generator as outputs as not required by CLI mode.
|
|
|
|
|
"""
|
|
|
|
|
gen = self.stream_inference(source, model)
|
|
|
|
|
for _ in gen: # running CLI inference without accumulating any outputs (do not modify)
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def setup_source(self, source):
|
|
|
|
|
"""Sets up source and inference mode."""
|
|
|
|
|
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
|
|
|
|
self.transforms = (
|
|
|
|
|
getattr(
|
|
|
|
|
self.model.model,
|
|
|
|
|
"transforms",
|
|
|
|
|
classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction),
|
|
|
|
|
)
|
|
|
|
|
if self.args.task == "classify"
|
|
|
|
|
else None
|
|
|
|
|
)
|
|
|
|
|
self.dataset = load_inference_source(
|
|
|
|
|
source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride, buffer=self.args.stream_buffer
|
|
|
|
|
)
|
|
|
|
|
self.source_type = self.dataset.source_type
|
|
|
|
|
if not getattr(self, "stream", True) and (
|
|
|
|
|
self.dataset.mode == "stream" # streams
|
|
|
|
|
or len(self.dataset) > 1000 # images
|
|
|
|
|
or any(getattr(self.dataset, "video_flag", [False]))
|
|
|
|
|
): # videos
|
|
|
|
|
LOGGER.warning(STREAM_WARNING)
|
|
|
|
|
self.vid_path = [None] * self.dataset.bs
|
|
|
|
|
self.vid_writer = [None] * self.dataset.bs
|
|
|
|
|
self.vid_frame = [None] * self.dataset.bs
|
|
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
|
def stream_inference(self, source=None, model=None, *args, **kwargs):
|
|
|
|
|
"""Streams real-time inference on camera feed and saves results to file."""
|
|
|
|
|
if self.args.verbose:
|
|
|
|
|
LOGGER.info("")
|
|
|
|
|
|
|
|
|
|
# Setup model
|
|
|
|
|
if not self.model:
|
|
|
|
|
self.setup_model(model)
|
|
|
|
|
|
|
|
|
|
with self._lock: # for thread-safe inference
|
|
|
|
|
# Setup source every time predict is called
|
|
|
|
|
self.setup_source(source if source is not None else self.args.source)
|
|
|
|
|
|
|
|
|
|
# Check if save_dir/ label file exists
|
|
|
|
|
if self.args.save or self.args.save_txt:
|
|
|
|
|
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
# Warmup model
|
|
|
|
|
if not self.done_warmup:
|
|
|
|
|
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
|
|
|
|
|
self.done_warmup = True
|
|
|
|
|
|
|
|
|
|
self.seen, self.windows, self.batch = 0, [], None
|
|
|
|
|
profilers = (
|
|
|
|
|
ops.Profile(device=self.device),
|
|
|
|
|
ops.Profile(device=self.device),
|
|
|
|
|
ops.Profile(device=self.device),
|
|
|
|
|
)
|
|
|
|
|
self.run_callbacks("on_predict_start")
|
|
|
|
|
for batch in self.dataset:
|
|
|
|
|
self.run_callbacks("on_predict_batch_start")
|
|
|
|
|
self.batch = batch
|
|
|
|
|
path, im0s, vid_cap, s = batch
|
|
|
|
|
|
|
|
|
|
# Preprocess
|
|
|
|
|
with profilers[0]:
|
|
|
|
|
im = self.preprocess(im0s)
|
|
|
|
|
|
|
|
|
|
# Inference
|
|
|
|
|
with profilers[1]:
|
|
|
|
|
preds = self.inference(im, *args, **kwargs)
|
|
|
|
|
if self.args.embed:
|
|
|
|
|
yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# Postprocess
|
|
|
|
|
with profilers[2]:
|
|
|
|
|
self.results = self.postprocess(preds, im, im0s)
|
|
|
|
|
|
|
|
|
|
self.run_callbacks("on_predict_postprocess_end")
|
|
|
|
|
# Visualize, save, write results
|
|
|
|
|
n = len(im0s)
|
|
|
|
|
for i in range(n):
|
|
|
|
|
self.seen += 1
|
|
|
|
|
self.results[i].speed = {
|
|
|
|
|
"preprocess": profilers[0].dt * 1e3 / n,
|
|
|
|
|
"inference": profilers[1].dt * 1e3 / n,
|
|
|
|
|
"postprocess": profilers[2].dt * 1e3 / n,
|
|
|
|
|
}
|
|
|
|
|
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
|
|
|
|
|
p = Path(p)
|
|
|
|
|
|
|
|
|
|
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
|
|
|
|
s += self.write_results(i, self.results, (p, im, im0))
|
|
|
|
|
if self.args.save or self.args.save_txt:
|
|
|
|
|
self.results[i].save_dir = self.save_dir.__str__()
|
|
|
|
|
if self.args.show and self.plotted_img is not None:
|
|
|
|
|
self.show(p)
|
|
|
|
|
if self.args.save and self.plotted_img is not None:
|
|
|
|
|
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
|
|
|
|
|
|
|
|
|
|
self.run_callbacks("on_predict_batch_end")
|
|
|
|
|
yield from self.results
|
|
|
|
|
|
|
|
|
|
# Print time (inference-only)
|
|
|
|
|
if self.args.verbose:
|
|
|
|
|
LOGGER.info(f"{s}{profilers[1].dt * 1E3:.1f}ms")
|
|
|
|
|
|
|
|
|
|
# Release assets
|
|
|
|
|
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
|
|
|
|
|
self.vid_writer[-1].release() # release final video writer
|
|
|
|
|
|
|
|
|
|
# Print results
|
|
|
|
|
if self.args.verbose and self.seen:
|
|
|
|
|
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
|
|
|
|
|
LOGGER.info(
|
|
|
|
|
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
|
|
|
|
|
f"{(1, 3, *im.shape[2:])}" % t
|
|
|
|
|
)
|
|
|
|
|
if self.args.save or self.args.save_txt or self.args.save_crop:
|
|
|
|
|
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
|
|
|
|
|
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
|
|
|
|
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
|
|
|
|
|
|
|
|
|
self.run_callbacks("on_predict_end")
|
|
|
|
|
|
|
|
|
|
def setup_model(self, model, verbose=True):
|
|
|
|
|
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
|
|
|
|
|
self.model = AutoBackend(
|
|
|
|
|
model or self.args.model,
|
|
|
|
|
device=select_device(self.args.device, verbose=verbose),
|
|
|
|
|
dnn=self.args.dnn,
|
|
|
|
|
data=self.args.data,
|
|
|
|
|
fp16=self.args.half,
|
|
|
|
|
fuse=True,
|
|
|
|
|
verbose=verbose,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.device = self.model.device # update device
|
|
|
|
|
self.args.half = self.model.fp16 # update half
|
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
|
|
def show(self, p):
|
|
|
|
|
"""Display an image in a window using OpenCV imshow()."""
|
|
|
|
|
im0 = self.plotted_img
|
|
|
|
|
if platform.system() == "Linux" and p not in self.windows:
|
|
|
|
|
self.windows.append(p)
|
|
|
|
|
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
|
|
|
|
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
|
|
|
|
cv2.imshow(str(p), im0)
|
|
|
|
|
cv2.waitKey(500 if self.batch[3].startswith("image") else 1) # 1 millisecond
|
|
|
|
|
|
|
|
|
|
def save_preds(self, vid_cap, idx, save_path):
|
|
|
|
|
"""Save video predictions as mp4 at specified path."""
|
|
|
|
|
im0 = self.plotted_img
|
|
|
|
|
# Save imgs
|
|
|
|
|
if self.dataset.mode == "image":
|
|
|
|
|
cv2.imwrite(save_path, im0)
|
|
|
|
|
else: # 'video' or 'stream'
|
|
|
|
|
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
|
|
|
|
|
if self.vid_path[idx] != save_path: # new video
|
|
|
|
|
self.vid_path[idx] = save_path
|
|
|
|
|
if self.args.save_frames:
|
|
|
|
|
Path(frames_path).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
self.vid_frame[idx] = 0
|
|
|
|
|
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
|
|
|
|
|
self.vid_writer[idx].release() # release previous video writer
|
|
|
|
|
if vid_cap: # video
|
|
|
|
|
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
|
|
|
|
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
else: # stream
|
|
|
|
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
|
|
|
|
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
|
|
|
|
|
self.vid_writer[idx] = cv2.VideoWriter(
|
|
|
|
|
str(Path(save_path).with_suffix(suffix)), cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
|
|
|
|
|
)
|
|
|
|
|
# Write video
|
|
|
|
|
self.vid_writer[idx].write(im0)
|
|
|
|
|
|
|
|
|
|
# Write frame
|
|
|
|
|
if self.args.save_frames:
|
|
|
|
|
cv2.imwrite(f"{frames_path}{self.vid_frame[idx]}.jpg", im0)
|
|
|
|
|
self.vid_frame[idx] += 1
|
|
|
|
|
|
|
|
|
|
def run_callbacks(self, event: str):
|
|
|
|
|
"""Runs all registered callbacks for a specific event."""
|
|
|
|
|
for callback in self.callbacks.get(event, []):
|
|
|
|
|
callback(self)
|
|
|
|
|
|
|
|
|
|
def add_callback(self, event: str, func):
|
|
|
|
|
"""Add callback."""
|
|
|
|
|
self.callbacks[event].append(func)
|