|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
from copy import copy
|
|
|
|
|
|
|
|
import hydra
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from ultralytics.nn.tasks import DetectionModel
|
|
|
|
from ultralytics.yolo import v8
|
|
|
|
from ultralytics.yolo.data import build_dataloader
|
|
|
|
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
|
|
|
from ultralytics.yolo.engine.trainer import BaseTrainer
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr
|
|
|
|
from ultralytics.yolo.utils.loss import BboxLoss
|
|
|
|
from ultralytics.yolo.utils.ops import xywh2xyxy
|
|
|
|
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
|
|
|
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
|
|
|
from ultralytics.yolo.utils.torch_utils import de_parallel
|
|
|
|
|
|
|
|
|
|
|
|
# BaseTrainer python usage
|
|
|
|
class DetectionTrainer(BaseTrainer):
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
|
|
|
|
# TODO: manage splits differently
|
|
|
|
# calculate stride - check if model is initialized
|
|
|
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
|
|
|
return create_dataloader(path=dataset_path,
|
|
|
|
imgsz=self.args.imgsz,
|
|
|
|
batch_size=batch_size,
|
|
|
|
stride=gs,
|
|
|
|
hyp=dict(self.args),
|
|
|
|
augment=mode == "train",
|
|
|
|
cache=self.args.cache,
|
|
|
|
pad=0 if mode == "train" else 0.5,
|
|
|
|
rect=self.args.rect,
|
|
|
|
rank=rank,
|
|
|
|
workers=self.args.workers,
|
|
|
|
close_mosaic=self.args.close_mosaic != 0,
|
|
|
|
prefix=colorstr(f'{mode}: '),
|
|
|
|
shuffle=mode == "train",
|
|
|
|
seed=self.args.seed)[0] if self.args.v5loader else \
|
|
|
|
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
|
|
|
|
|
|
|
|
def preprocess_batch(self, batch):
|
|
|
|
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def set_model_attributes(self):
|
|
|
|
# nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
|
|
|
|
# self.args.box *= 3 / nl # scale to layers
|
|
|
|
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
|
|
|
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
|
|
|
self.model.nc = self.data["nc"] # attach number of classes to model
|
|
|
|
self.model.names = self.data["names"] # attach class names to model
|
|
|
|
self.model.args = self.args # attach hyperparameters to model
|
|
|
|
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
|
|
|
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
|
|
|
model = DetectionModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose)
|
|
|
|
if weights:
|
|
|
|
model.load(weights)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
def get_validator(self):
|
|
|
|
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss'
|
|
|
|
return v8.detect.DetectionValidator(self.test_loader,
|
|
|
|
save_dir=self.save_dir,
|
|
|
|
logger=self.console,
|
|
|
|
args=copy(self.args))
|
|
|
|
|
|
|
|
def criterion(self, preds, batch):
|
|
|
|
if not hasattr(self, 'compute_loss'):
|
|
|
|
self.compute_loss = Loss(de_parallel(self.model))
|
|
|
|
return self.compute_loss(preds, batch)
|
|
|
|
|
|
|
|
def label_loss_items(self, loss_items=None, prefix="train"):
|
|
|
|
"""
|
|
|
|
Returns a loss dict with labelled training loss items tensor
|
|
|
|
"""
|
|
|
|
# Not needed for classification but necessary for segmentation & detection
|
|
|
|
keys = [f"{prefix}/{x}" for x in self.loss_names]
|
|
|
|
if loss_items is not None:
|
|
|
|
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
|
|
|
|
return dict(zip(keys, loss_items))
|
|
|
|
else:
|
|
|
|
return keys
|
|
|
|
|
|
|
|
def progress_string(self):
|
|
|
|
return ('\n' + '%11s' *
|
|
|
|
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
|
|
|
|
|
|
|
def plot_training_samples(self, batch, ni):
|
|
|
|
plot_images(images=batch["img"],
|
|
|
|
batch_idx=batch["batch_idx"],
|
|
|
|
cls=batch["cls"].squeeze(-1),
|
|
|
|
bboxes=batch["bboxes"],
|
|
|
|
paths=batch["im_file"],
|
|
|
|
fname=self.save_dir / f"train_batch{ni}.jpg")
|
|
|
|
|
|
|
|
def plot_metrics(self):
|
|
|
|
plot_results(file=self.csv) # save results.png
|
|
|
|
|
|
|
|
|
|
|
|
# Criterion class for computing training losses
|
|
|
|
class Loss:
|
|
|
|
|
|
|
|
def __init__(self, model): # model must be de-paralleled
|
|
|
|
|
|
|
|
device = next(model.parameters()).device # get model device
|
|
|
|
h = model.args # hyperparameters
|
|
|
|
|
|
|
|
m = model.model[-1] # Detect() module
|
|
|
|
self.bce = nn.BCEWithLogitsLoss(reduction='none')
|
|
|
|
self.hyp = h
|
|
|
|
self.stride = m.stride # model strides
|
|
|
|
self.nc = m.nc # number of classes
|
|
|
|
self.no = m.no
|
|
|
|
self.reg_max = m.reg_max
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
self.use_dfl = m.reg_max > 1
|
|
|
|
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
|
|
|
|
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
|
|
|
|
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
|
|
|
|
|
|
|
|
def preprocess(self, targets, batch_size, scale_tensor):
|
|
|
|
if targets.shape[0] == 0:
|
|
|
|
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
|
|
|
else:
|
|
|
|
i = targets[:, 0] # image index
|
|
|
|
_, counts = i.unique(return_counts=True)
|
|
|
|
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
|
|
|
for j in range(batch_size):
|
|
|
|
matches = i == j
|
|
|
|
n = matches.sum()
|
|
|
|
if n:
|
|
|
|
out[j, :n] = targets[matches, 1:]
|
|
|
|
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
|
|
|
return out
|
|
|
|
|
|
|
|
def bbox_decode(self, anchor_points, pred_dist):
|
|
|
|
if self.use_dfl:
|
|
|
|
b, a, c = pred_dist.shape # batch, anchors, channels
|
|
|
|
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
|
|
|
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
|
|
|
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
|
|
|
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
|
|
|
|
|
|
|
def __call__(self, preds, batch):
|
|
|
|
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
|
|
|
feats = preds[1] if isinstance(preds, tuple) else preds
|
|
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
|
|
|
(self.reg_max * 4, self.nc), 1)
|
|
|
|
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
|
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
|
|
|
|
|
|
|
dtype = pred_scores.dtype
|
|
|
|
batch_size = pred_scores.shape[0]
|
|
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
|
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
|
|
|
|
|
|
|
# targets
|
|
|
|
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
|
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
|
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
|
|
|
|
|
|
|
# pboxes
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
|
|
|
|
|
|
|
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
|
|
|
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
|
|
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
|
|
|
|
|
|
|
target_bboxes /= stride_tensor
|
|
|
|
target_scores_sum = target_scores.sum()
|
|
|
|
|
|
|
|
# cls loss
|
|
|
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
|
|
|
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
|
|
|
|
|
|
|
# bbox loss
|
|
|
|
if fg_mask.sum():
|
|
|
|
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
|
|
|
|
target_scores_sum, fg_mask)
|
|
|
|
|
|
|
|
loss[0] *= self.hyp.box # box gain
|
|
|
|
loss[1] *= self.hyp.cls # cls gain
|
|
|
|
loss[2] *= self.hyp.dfl # dfl gain
|
|
|
|
|
|
|
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
|
def train(cfg):
|
|
|
|
cfg.model = cfg.model or "yolov8n.pt"
|
|
|
|
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
|
|
|
|
cfg.device = cfg.device if cfg.device is not None else ''
|
|
|
|
# trainer = DetectionTrainer(cfg)
|
|
|
|
# trainer.train()
|
|
|
|
from ultralytics import YOLO
|
|
|
|
model = YOLO(cfg.model)
|
|
|
|
model.train(**cfg)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
train()
|