You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

242 lines
8.8 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Uniform, Normal, XavierUniform
from paddlers_slim.models.ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from paddlers_slim.models.ppdet.modeling.layers import DeformableConvV2, ConvNormLayer, LiteConv
import math
from paddlers_slim.models.ppdet.modeling.ops import batch_norm
from ..shape_spec import ShapeSpec
__all__ = ['TTFFPN']
class Upsample(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(Upsample, self).__init__()
fan_in = ch_in * 3 * 3
stdv = 1. / math.sqrt(fan_in)
self.dcn = DeformableConvV2(
ch_in,
ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(
initializer=Constant(0),
regularizer=L2Decay(0.),
learning_rate=2.),
lr_scale=2.,
regularizer=L2Decay(0.))
self.bn = batch_norm(
ch_out, norm_type=norm_type, initializer=Constant(1.))
def forward(self, feat):
dcn = self.dcn(feat)
bn = self.bn(dcn)
relu = F.relu(bn)
out = F.interpolate(relu, scale_factor=2., mode='bilinear')
return out
class DeConv(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(DeConv, self).__init__()
self.deconv = nn.Sequential()
conv1 = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
stride=1,
filter_size=1,
norm_type=norm_type,
initializer=XavierUniform())
conv2 = nn.Conv2DTranspose(
in_channels=ch_out,
out_channels=ch_out,
kernel_size=4,
padding=1,
stride=2,
groups=ch_out,
weight_attr=ParamAttr(initializer=XavierUniform()),
bias_attr=False)
bn = batch_norm(ch_out, norm_type=norm_type, norm_decay=0.)
conv3 = ConvNormLayer(
ch_in=ch_out,
ch_out=ch_out,
stride=1,
filter_size=1,
norm_type=norm_type,
initializer=XavierUniform())
self.deconv.add_sublayer('conv1', conv1)
self.deconv.add_sublayer('relu6_1', nn.ReLU6())
self.deconv.add_sublayer('conv2', conv2)
self.deconv.add_sublayer('bn', bn)
self.deconv.add_sublayer('relu6_2', nn.ReLU6())
self.deconv.add_sublayer('conv3', conv3)
self.deconv.add_sublayer('relu6_3', nn.ReLU6())
def forward(self, inputs):
return self.deconv(inputs)
class LiteUpsample(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(LiteUpsample, self).__init__()
self.deconv = DeConv(ch_in, ch_out, norm_type=norm_type)
self.conv = LiteConv(ch_in, ch_out, norm_type=norm_type)
def forward(self, inputs):
deconv_up = self.deconv(inputs)
conv = self.conv(inputs)
interp_up = F.interpolate(conv, scale_factor=2., mode='bilinear')
return deconv_up + interp_up
class ShortCut(nn.Layer):
def __init__(self,
layer_num,
ch_in,
ch_out,
norm_type='bn',
lite_neck=False,
name=None):
super(ShortCut, self).__init__()
shortcut_conv = nn.Sequential()
for i in range(layer_num):
fan_out = 3 * 3 * ch_out
std = math.sqrt(2. / fan_out)
in_channels = ch_in if i == 0 else ch_out
shortcut_name = name + '.conv.{}'.format(i)
if lite_neck:
shortcut_conv.add_sublayer(
shortcut_name,
LiteConv(
in_channels=in_channels,
out_channels=ch_out,
with_act=i < layer_num - 1,
norm_type=norm_type))
else:
shortcut_conv.add_sublayer(
shortcut_name,
nn.Conv2D(
in_channels=in_channels,
out_channels=ch_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0, std)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.))))
if i < layer_num - 1:
shortcut_conv.add_sublayer(shortcut_name + '.act',
nn.ReLU())
self.shortcut = self.add_sublayer('shortcut', shortcut_conv)
def forward(self, feat):
out = self.shortcut(feat)
return out
@register
@serializable
class TTFFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[128,256,512,1024] by default, means the channels of DarkNet53
backbone return_idx [1,2,3,4].
planes (list): the number of output feature channels of FPN.
[256, 128, 64] by default
shortcut_num (list): the number of convolution layers in each shortcut.
[3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs
in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
lite_neck (bool): whether to use lite conv in TTFNet FPN,
False by default
fusion_method (string): the method to fusion upsample and lateral layer.
'add' and 'concat' are optional, add by default
"""
__shared__ = ['norm_type']
def __init__(self,
in_channels,
planes=[256, 128, 64],
shortcut_num=[3, 2, 1],
norm_type='bn',
lite_neck=False,
fusion_method='add'):
super(TTFFPN, self).__init__()
self.planes = planes
self.shortcut_num = shortcut_num[::-1]
self.shortcut_len = len(shortcut_num)
self.ch_in = in_channels[::-1]
self.fusion_method = fusion_method
self.upsample_list = []
self.shortcut_list = []
self.upper_list = []
for i, out_c in enumerate(self.planes):
in_c = self.ch_in[i] if i == 0 else self.upper_list[-1]
upsample_module = LiteUpsample if lite_neck else Upsample
upsample = self.add_sublayer(
'upsample.' + str(i),
upsample_module(
in_c, out_c, norm_type=norm_type))
self.upsample_list.append(upsample)
if i < self.shortcut_len:
shortcut = self.add_sublayer(
'shortcut.' + str(i),
ShortCut(
self.shortcut_num[i],
self.ch_in[i + 1],
out_c,
norm_type=norm_type,
lite_neck=lite_neck,
name='shortcut.' + str(i)))
self.shortcut_list.append(shortcut)
if self.fusion_method == 'add':
upper_c = out_c
elif self.fusion_method == 'concat':
upper_c = out_c * 2
else:
raise ValueError('Illegal fusion method. Expected add or\
concat, but received {}'.format(self.fusion_method))
self.upper_list.append(upper_c)
def forward(self, inputs):
feat = inputs[-1]
for i, out_c in enumerate(self.planes):
feat = self.upsample_list[i](feat)
if i < self.shortcut_len:
shortcut = self.shortcut_list[i](inputs[-i - 2])
if self.fusion_method == 'add':
feat = feat + shortcut
else:
feat = paddle.concat([feat, shortcut], axis=1)
return feat
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=self.upper_list[-1], )]