You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

435 lines
15 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
import sys
import numpy as np
import itertools
import paddle
from paddlers_slim.models.ppdet.modeling.rbox_utils import poly2rbox_np
from paddlers_slim.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'draw_pr_curve',
'bbox_area',
'jaccard_overlap',
'prune_zero_padding',
'DetectionMAP',
'ap_per_class',
'compute_ap',
]
def draw_pr_curve(precision,
recall,
iou=0.5,
out_dir='pr_curve',
file_name='precision_recall_curve.jpg'):
if not os.path.exists(out_dir):
os.makedirs(out_dir)
output_path = os.path.join(out_dir, file_name)
try:
import matplotlib.pyplot as plt
except Exception as e:
logger.error('Matplotlib not found, plaese install matplotlib.'
'for example: `pip install matplotlib`.')
raise e
plt.cla()
plt.figure('P-R Curve')
plt.title('Precision/Recall Curve(IoU={})'.format(iou))
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.grid(True)
plt.plot(recall, precision)
plt.savefig(output_path)
def bbox_area(bbox, is_bbox_normalized):
"""
Calculate area of a bounding box
"""
norm = 1. - float(is_bbox_normalized)
width = bbox[2] - bbox[0] + norm
height = bbox[3] - bbox[1] + norm
return width * height
def jaccard_overlap(pred, gt, is_bbox_normalized=False):
"""
Calculate jaccard overlap ratio between two bounding box
"""
if pred[0] >= gt[2] or pred[2] <= gt[0] or \
pred[1] >= gt[3] or pred[3] <= gt[1]:
return 0.
inter_xmin = max(pred[0], gt[0])
inter_ymin = max(pred[1], gt[1])
inter_xmax = min(pred[2], gt[2])
inter_ymax = min(pred[3], gt[3])
inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
is_bbox_normalized)
pred_size = bbox_area(pred, is_bbox_normalized)
gt_size = bbox_area(gt, is_bbox_normalized)
overlap = float(inter_size) / (pred_size + gt_size - inter_size)
return overlap
def calc_rbox_iou(pred, gt_poly):
"""
calc iou between rotated bbox
"""
# calc iou of bounding box for speedup
pred = np.array(pred, np.float32).reshape(-1, 2)
gt_poly = np.array(gt_poly, np.float32).reshape(-1, 2)
pred_rect = [
np.min(pred[:, 0]), np.min(pred[:, 1]), np.max(pred[:, 0]),
np.max(pred[:, 1])
]
gt_rect = [
np.min(gt_poly[:, 0]), np.min(gt_poly[:, 1]), np.max(gt_poly[:, 0]),
np.max(gt_poly[:, 1])
]
iou = jaccard_overlap(pred_rect, gt_rect, False)
if iou <= 0:
return iou
# calc rbox iou
pred_rbox = poly2rbox_np(pred.reshape(-1, 8)).reshape(-1, 5)
gt_rbox = poly2rbox_np(gt_poly.reshape(-1, 8)).reshape(-1, 5)
try:
from ext_op import rbox_iou
except Exception as e:
print("import custom_ops error, try install ext_op " \
"following ppdet/ext_op/README.md", e)
sys.stdout.flush()
sys.exit(-1)
pd_gt_rbox = paddle.to_tensor(gt_rbox, dtype='float32')
pd_pred_rbox = paddle.to_tensor(pred_rbox, dtype='float32')
iou = rbox_iou(pd_gt_rbox, pd_pred_rbox)
iou = iou.numpy()
return iou[0][0]
def prune_zero_padding(gt_box, gt_label, difficult=None):
valid_cnt = 0
for i in range(len(gt_box)):
if (gt_box[i] == 0).all():
break
valid_cnt += 1
return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
if difficult is not None else None)
class DetectionMAP(object):
"""
Calculate detection mean average precision.
Currently support two types: 11point and integral
Args:
class_num (int): The class number.
overlap_thresh (float): The threshold of overlap
ratio between prediction bounding box and
ground truth bounding box for deciding
true/false positive. Default 0.5.
map_type (str): Calculation method of mean average
precision, currently support '11point' and
'integral'. Default '11point'.
is_bbox_normalized (bool): Whether bounding boxes
is normalized to range[0, 1]. Default False.
evaluate_difficult (bool): Whether to evaluate
difficult bounding boxes. Default False.
catid2name (dict): Mapping between category id and category name.
classwise (bool): Whether per-category AP and draw
P-R Curve or not.
"""
def __init__(self,
class_num,
overlap_thresh=0.5,
map_type='11point',
is_bbox_normalized=False,
evaluate_difficult=False,
catid2name=None,
classwise=False):
self.class_num = class_num
self.overlap_thresh = overlap_thresh
assert map_type in ['11point', 'integral'], \
"map_type currently only support '11point' "\
"and 'integral'"
self.map_type = map_type
self.is_bbox_normalized = is_bbox_normalized
self.evaluate_difficult = evaluate_difficult
self.classwise = classwise
self.classes = []
for cname in catid2name.values():
self.classes.append(cname)
self.reset()
def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
"""
Update metric statics from given prediction and ground
truth infomations.
"""
if difficult is None:
difficult = np.zeros_like(gt_label)
# record class gt count
for gtl, diff in zip(gt_label, difficult):
if self.evaluate_difficult or int(diff) == 0:
self.class_gt_counts[int(np.array(gtl))] += 1
# record class score positive
visited = [False] * len(gt_label)
for b, s, l in zip(bbox, score, label):
pred = b.tolist() if isinstance(b, np.ndarray) else b
max_idx = -1
max_overlap = -1.0
for i, gl in enumerate(gt_label):
if int(gl) == int(l):
if len(gt_box[i]) == 8:
overlap = calc_rbox_iou(pred, gt_box[i])
else:
overlap = jaccard_overlap(pred, gt_box[i],
self.is_bbox_normalized)
if overlap > max_overlap:
max_overlap = overlap
max_idx = i
if max_overlap > self.overlap_thresh:
if self.evaluate_difficult or \
int(np.array(difficult[max_idx])) == 0:
if not visited[max_idx]:
self.class_score_poss[int(l)].append([s, 1.0])
visited[max_idx] = True
else:
self.class_score_poss[int(l)].append([s, 0.0])
else:
self.class_score_poss[int(l)].append([s, 0.0])
def reset(self):
"""
Reset metric statics
"""
self.class_score_poss = [[] for _ in range(self.class_num)]
self.class_gt_counts = [0] * self.class_num
self.mAP = 0.0
def accumulate(self):
"""
Accumulate metric results and calculate mAP
"""
mAP = 0.
valid_cnt = 0
eval_results = []
for score_pos, count in zip(self.class_score_poss,
self.class_gt_counts):
if count == 0: continue
if len(score_pos) == 0:
valid_cnt += 1
continue
accum_tp_list, accum_fp_list = \
self._get_tp_fp_accum(score_pos)
precision = []
recall = []
for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
precision.append(float(ac_tp) / (ac_tp + ac_fp))
recall.append(float(ac_tp) / count)
one_class_ap = 0.0
if self.map_type == '11point':
max_precisions = [0.] * 11
start_idx = len(precision) - 1
for j in range(10, -1, -1):
for i in range(start_idx, -1, -1):
if recall[i] < float(j) / 10.:
start_idx = i
if j > 0:
max_precisions[j - 1] = max_precisions[j]
break
else:
if max_precisions[j] < precision[i]:
max_precisions[j] = precision[i]
one_class_ap = sum(max_precisions) / 11.
mAP += one_class_ap
valid_cnt += 1
elif self.map_type == 'integral':
import math
prev_recall = 0.
for i in range(len(precision)):
recall_gap = math.fabs(recall[i] - prev_recall)
if recall_gap > 1e-6:
one_class_ap += precision[i] * recall_gap
prev_recall = recall[i]
mAP += one_class_ap
valid_cnt += 1
else:
logger.error("Unspported mAP type {}".format(self.map_type))
sys.exit(1)
eval_results.append({
'class': self.classes[valid_cnt - 1],
'ap': one_class_ap,
'precision': precision,
'recall': recall,
})
self.eval_results = eval_results
self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
def get_map(self):
"""
Get mAP result
"""
if self.mAP is None:
logger.error("mAP is not calculated.")
if self.classwise:
# Compute per-category AP and PR curve
try:
from terminaltables import AsciiTable
except Exception as e:
logger.error(
'terminaltables not found, plaese install terminaltables. '
'for example: `pip install terminaltables`.')
raise e
results_per_category = []
for eval_result in self.eval_results:
results_per_category.append(
(str(eval_result['class']),
'{:0.3f}'.format(float(eval_result['ap']))))
draw_pr_curve(
eval_result['precision'],
eval_result['recall'],
out_dir='voc_pr_curve',
file_name='{}_precision_recall_curve.jpg'.format(
eval_result['class']))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(
*[results_flatten[i::num_columns] for i in range(num_columns)])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('Per-category of VOC AP: \n{}'.format(table.table))
logger.info(
"per-category PR curve has output to voc_pr_curve folder.")
return self.mAP
def _get_tp_fp_accum(self, score_pos_list):
"""
Calculate accumulating true/false positive results from
[score, pos] records
"""
sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
accum_tp = 0
accum_fp = 0
accum_tp_list = []
accum_fp_list = []
for (score, pos) in sorted_list:
accum_tp += int(pos)
accum_tp_list.append(accum_tp)
accum_fp += 1 - int(pos)
accum_fp_list.append(accum_fp)
return accum_tp_list, accum_fp_list
def ap_per_class(tp, conf, pred_cls, target_cls):
"""
Computes the average precision, given the recall and precision curves.
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
Args:
tp (list): True positives.
conf (list): Objectness value from 0-1.
pred_cls (list): Predicted object classes.
target_cls (list): Target object classes.
"""
tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(
pred_cls), np.array(target_cls)
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in unique_classes:
i = pred_cls == c
n_gt = sum(target_cls == c) # Number of ground truth objects
n_p = sum(i) # Number of predicted objects
if (n_p == 0) and (n_gt == 0):
continue
elif (n_p == 0) or (n_gt == 0):
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = np.cumsum(1 - tp[i])
tpc = np.cumsum(tp[i])
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(tpc[-1] / (n_gt + 1e-16))
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(
p)
def compute_ap(recall, precision):
"""
Computes the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
Args:
recall (list): The recall curve.
precision (list): The precision curve.
Returns:
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap